Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

Copyright C 1988 by The American Society for Pharmacology and Experimental Therapeutics
Copyright C 1988 by The American Society for Pharmacology and Experimental Therapeutics
Dopamine Release in Vivo from Nigrostriatal,
M MCOLOGICAL REVIEWS

MCOLOGICAL REVIEWS

And Dopamine Release in Vivo from Nigrostriatal,

Mesolimbic, and Mesocortical Neurons: Utility of 3-

Methoxytyramine Measurements **Methoxytyramine Measurements**

PAUL L. WOOD and C. ANTHONY ALTAR

CNS Dsseoses Research, G. D. Searle & Co., Monsanto Company-AA4A, St. Louis, Missouri 63198 (P. L. W.), and Pharmacologka! Sciences,

I. Introduction

RESEARCH over the last decade has dramatically advanced our understanding of how drugs modify synaptic I. Introduction
RESEARCH over the last decade has dramatically advanced our understanding of how drugs modify synaptic
function. This knowledge encompasses a wide range of **Function**
Function
RESEARCH over the last decade has dramatically advanced our understanding of how drugs modify synaptic
function. This knowledge encompasses a wide range of
mechanisms involved in the production, rel EXEARCH over the last decade has dramatically advanced our understanding of how drugs modify synaptic (function. This knowledge encompasses a wide range of artimechanisms involved in the production, release, and postsynapt RESEARCH over the last decade has dramatically advanced our understanding of how drugs modify synaptic function. This knowledge encompasses a wide range of art mechanisms involved in the production, release, and postsynapt vanced our understanding of how drugs modify synaptic
function. This knowledge encompasses a wide range of
mechanisms involved in the production, release, and
postsynaptic coupling of received chemical signals. It is
the function. This knowledge encompasses a wide range of mechanisms involved in the production, release, and postsynaptic coupling of received chemical signals. It is the purpose of this review to integrate data from a number mechanisms involved in the production, release, and
postsynaptic coupling of received chemical signals. It is
the purpose of this review to integrate data from a
number of biochemical approaches which are relevant to
evalu postsynaptic coupling of received chemical signals. It is
the purpose of this review to integrate data from a
number of biochemical approaches which are relevant to
evaluating the concept that 3-methoxytyramine (3-MT)
is a the purpose of this review to integrate data from a
number of biochemical approaches which are relevant to
evaluating the concept that 3-methoxytyramine (3-MT)
is a metabolite of dopamine (DA) that is formed after
DA rele number of biochemical approaches which
evaluating the concept that 3-methoxyty;
is a metabolite of dopamine (DA) that i
DA release and is therefore a biochemic:
release (for abbreviations, see table 1).
Detailed studies of aluating the concept that 3-methoxytyramine $(3-MT)$
a metabolite of dopamine (DA) that is formed after
A release and is therefore a biochemical index of DA
lease (for abbreviations, see table 1).
Detailed studies of neu

is a metabolite of dopamine (DA) that is formed after

DA release and is therefore a biochemical index of DA

release (for abbreviations, see table 1).

Detailed studies of neurotransmitter synthesis and

postsynaptic rec DA release and is therefore a biochemical index of DA
release (for abbreviations, see table 1).
Detailed studies of neurotransmitter synthesis and
postsynaptic receptor function have been made possible
with the introductio release (for abbreviations, see table 1).
Detailed studies of neurotransmitter synthesis and
postsynaptic receptor function have been made possible
with the introduction of molecular approaches to neu-
roscience research. Detailed studies of neurotransmitter synthesis an postsynaptic receptor function have been made possible with the introduction of molecular approaches to neuroscience research. However, the intervening process neurotransmi postsynaptic receptor function have been made possible
with the introduction of molecular approaches to neu-
roscience research. However, the intervening process,
neurotransmitter release, is still the most difficult procwith the introduction of molecular approaches to neu-
roscience research. However, the intervening process,
neurotransmitter release, is still the most difficult proc-
ess to study, requiring in vivo procedures with which roscience research. However, the intervening process, the meurotransmitter release, is still the most difficult proc-
ess to study, requiring in vivo procedures with which
tonic actions of afferent fiber systems to chemic neurotransmitter release, is still the most difficult process to study, requiring in vivo procedures with which which tonic actions of afferent fiber systems to chemically endefined pathways can be monitored. Such in vivo ess to study, requiring in vivo procedures with which
tonic actions of afferent fiber systems to chemically
endefined pathways can be monitored. Such in vivo release
studies require sensitive analytical methods and, in man tonic actions of afferent fiber systems to chemically
defined pathways can be monitored. Such in vivo release
studies require sensitive analytical methods and, in many
dicases, complex surgical procedures are needed. In th defined pathways can be monitored. Such in vivo release studies require sensitive analytical methods and, in man cases, complex surgical procedures are needed. In the specific case of DA release, a number of approaches hav studies require sensitive analytical methods and, in many cases, complex surgical procedures are needed. In the specific case of DA release, a number of approaches have been extensively investigated, all of which use DA ov ses, complex surgical procedures are needed. In the ecific case of DA release, a number of approaches have en extensively investigated, all of which use DA over-
www as an index of DA release (see ref. 122 for review).
(a)

specific case of DA release, a number of approaches have
been extensively investigated, all of which use DA over-
flow as an index of DA release (see ref. 122 for review).
(a) With the *push-pull perfusion technique* (26, been extensively investigated, all of which use DA over-
flow as an index of DA release (see ref. 122 for review).
(a) With the *push-pull perfusion technique* (26, 126),
the push-pull cannula consists of two concentric t flow as an index of DA release (see ref. 122 for review).

(a) With the *push-pull perfusion technique* (26, 126),

the push-pull cannula consists of two concentric tubes

which are stereotaxically inserted into a defined (a) With the *push-pull perfusion technique* (26, 126), the push-pull cannula consists of two concentric tubes which are stereotaxically inserted into a defined brain region. A perfusion fluid is pumped into this local br the push-pull cannula consists of two concentric tubes
which are stereotaxically inserted into a defined brain
region. A perfusion fluid is pumped into this local brain
region via the inner tube ("push") and the perfusate
 which are stereotaxically inserted into a defined brain to j
region. A perfusion fluid is pumped into this local brain par
region via the inner tube ("push") and the perfusate foll
collected from the outer tube ("pull"). region. A perfusion fluid is pumped into this local brain
region via the inner tube ("push") and the perfusate
collected from the outer tube ("pull"). This approach,
however, suffers from the major problem of local and
var region via the inner tube ("push") and the perfusate follected from the outer tube ("pull"). This approach, however, suffers from the major problem of local and variable tissue damage at the tip of the cannula (122) and h collected from the outer tube ("pull"). This approach,
however, suffers from the major problem of local and A.
variable tissue damage at the tip of the cannula (122)
and has therefore been used to a greater extent in spec however, suffers from the major problem of local and
variable tissue damage at the tip of the cannula (122)
and has therefore been used to a greater extent in species
larger than the rat where larger brain regions can be variable tissue damage at the tip of the cannula (122)
and has therefore been used to a greater extent in species
larger than the rat where larger brain regions can be
perfused. Although never proven, this presumably limit and has ther
larger than
perfused. Alt
local tissue d
in the rat.
(b) With

perfused. Although never proven, this presumably limits local tissue damage compared to the use of this technique in the rat.

(b) With the *cup technique* (26) , a brain region of interest is exposed and covered with a cup compared to the use of this technique
in the rat.
(b) With the *cup technique* (26), a brain region
interest is exposed and covered with a small plexigla
cup containing a perfusion fluid. The leakage of tran
mitters i in the rat.

(b) With the *cup technique* (26), a brain region of to interest is exposed and covered with a small plexiglass cap containing a perfusion fluid. The leakage of transtinies into this fluid bathing the surface (b) With the *cup technique* (26), a brain region of interest is exposed and covered with a small plexiglass cup containing a perfusion fluid. The leakage of transmitters into this fluid bathing the surface of the area un interest is exposed and covered with a small plexiglass cause cup containing a perfusion fluid. The leakage of trans-
time mitters into this fluid bathing the surface of the areas two
under study is then monitored. This te cup containing a perfusion fluid. The leakage of transmitters into this fluid bathing the surface of the are under study is then monitored. This technique require radical surgery to remove overlying cortical areas the stri

tum, and has mainly been used in species larger than the rat.

(c) With the ventricular perfusion technique (146) , rat.

m, and has mainly been used in species larger than the the *c* (c) With the *ventricular perfusion technique* (146), is ificial cerebrospinal fluid is perfused into the lateral tum, and has mainly been used in species larger than the rat.

(c) With the *ventricular perfusion technique* (146), artificial cerebrospinal fluid is perfused into the lateral ventricle and collected from the cisterna mag tum, and has mainly been used in species larger than the rat.

(c) With the *ventricular perfusion technique* (146) artificial cerebrospinal fluid is perfused into the latera

ventricle and collected from the cisterna magn rat.

(c) With the *ventricular perfusion technique* (146),

artificial cerebrospinal fluid is perfused into the lateral

ventricle and collected from the cisterna magna; how-

ever, the site of origin of released neurotra (c) With the *ventricular perfusion*
artificial cerebrospinal fluid is perfuse
ventricle and collected from the ciste
ever, the site of origin of released neu
their metabolites can only be inferred.
(d) With in vivo volta ventricle and collected from the cisterna magna; how-
ever, the site of origin of released neurotransmitters or
their metabolites can only be inferred.
(d) With *in vivo voltammetry* (111), the oxidation of
locally release

ventricle and collected from the cisterna magna; how-
ever, the site of origin of released neurotransmitters or
their metabolites can only be inferred.
(d) With *in vivo voltammetry* (111), the oxidation of
locally releas ever, the site of origin of released neurotransmitters or
their metabolites can only be inferred.
(d) With in vivo voltammetry (111), the oxidation of
locally released catecholamines is monitored with a
graphite electrode. their metabolites can only be inferred.

(d) With *in vivo voltammetry* (111), the oxidation of

locally released catecholamines is monitored with a

graphite electrode. In vivo voltammetry is unique in that

it offers a r (d) With in vivo voltammetry (111) , the oxidation of locally released catecholamines is monitored with graphite electrode. In vivo voltammetry is unique in this it offers a real-time analysis of neurotransmitter release locally released catecholamines is monitored with
graphite electrode. In vivo voltammetry is unique in the
it offers a real-time analysis of neurotransmitter releas
However, the identity of the monitored electrochemic
sign graphite electrode. In vivo voltammetry is unique in
it offers a real-time analysis of neurotransmitter re
However, the identity of the monitored electroche
signal can only be inferred from general electroche
responses mea offers a real-time analysis of neurotransmitter release.

bwever, the identity of the monitored electrochemical

grad can only be inferred from general electrochemical

gronses measured in vitro and is never absolute.

(e)

However, the identity of the monitored electrochemical
signal can only be inferred from general electrochemical
responses measured in vitro and is never absolute.
 (e) With *intracerebral dialysis* $(200, 215)$, the use o signal can only be inferred from general electrochemical
responses measured in vitro and is never absolute.
 (e) With *intracerebral dialysis* $(200, 215)$, the use of a
selectively permeable dialysis membrane is involved responses measured in vitro and is never absolute.

(e) With *intracerebral dialysis* (200, 215), the use of a

selectively permeable dialysis membrane is involved, and

therefore this technique is not susceptible to the d (e) With *intracerebral dialysis* (200, 215), the use of selectively permeable dialysis membrane is involved, at therefore this technique is not susceptible to the degrof local tissue damage observed with push-pull perfus selectively permeable dialysis membrane is involved, a
therefore this technique is not susceptible to the deg
of local tissue damage observed with push-pull perfusi
while allowing direct confirmation of the dialyzed end
en therefore this technique is not susceptible to the degree
of local tissue damage observed with push-pull perfusion,
while allowing direct confirmation of the dialyzed endog-
enous compounds. This method is limited by the r of local tissue damage observed with push-pull perfusion,
while allowing direct confirmation of the dialyzed endog-
enous compounds. This method is limited by the require-
ment of surgery, by the growth of a glial coating while allowing direct confirmation of the dialyzed endogenous compounds. This method is limited by the requirement of surgery, by the growth of a glial coating on the dialysis membrane, by the collection periods of 10 to 2 enous compounds. This method is limited by the req
ment of surgery, by the growth of a glial coating or
dialysis membrane, by the collection periods of 10 t
min, and by the sensitive analytical methods which
required to mo ment of surgery, by the growth of a glidialysis membrane, by the collection po
min, and by the sensitive analytical m
required to monitor the very low leve
mitter which diffuse into the dialysate.

II. Methodology

quired to monitor the very low levels of neurotrans-
itter which diffuse into the dialysate.
II. Methodology
Since the steady-state levels of 3-MT are in the fmol
pmol per mg protein range, the measurement of this mitter which diffuse into the dialysate.

II. Methodology

Since the steady-state levels of 3-MT are in the fmol

to pmol per mg protein range, the measurement of this

parameter of DA release awaited the development of th II. Methodology
Since the steady-state levels of 3-MT are in the fmol
to pmol per mg protein range, the measurement of this
parameter of DA release awaited the development of the
following key methodological advances. following Since the steady-state levels of 3-MT
to pmol per mg protein range, the mea
parameter of DA release awaited the de
following key methodological advances. *A.* **A.** *A.* **A.** *A. A.**A.**Microwave**Tissue**Fixation***
A.**Microwave**Tissue**Fixation
A. Microwave**Tissue**Fixation
After decapitation, there is a**

EXECUTE: Interest than the rat where larger brain regions can be
 EXECU 2.1.1.6) to form 3-MT (42). This

perfused. Although never proven, this presumably limits

local tissue damage compared to the use of this techniq A. Microwave Tissue Fixation
After decapitation, there is a postmortem release of DA which is rapidly methylated by catechol-o-methyl-A. Microwave Tissue Fixation
After decapitation, there is a postmortem release of
DA which is rapidly methylated by catechol-o-methyl-
transferase (COMT; EC 2.1.1.6) to form 3-MT (42). This
postmortem accumulation has been A. *Mucrowave 1 issue Fixtation*

After decapitation, there is a postmortem release of

DA which is rapidly methylated by catechol-o-methyl-

transferase (COMT; EC 2.1.1.6) to form 3-MT (42). This

postmortem accumulation After decapitation, there is a postmortem release of
DA which is rapidly methylated by catechol-o-methyl-
transferase (COMT; EC 2.1.1.6) to form 3-MT (42). This
postmortem accumulation has been shown to be biphasic
with a DA which is rapidly methylated by catechol-o-methyl-
transferase (COMT; EC 2.1.1.6) to form 3-MT (42). This
postmortem accumulation has been shown to be biphasic
with an initial exponential phase followed by a linear
phas transferase (COMT; EC 2.1.1.6) to form 3-MT (42). This
postmortem accumulation has been shown to be biphasic
with an initial exponential phase followed by a linear
phase that continues for up to 2 h in the rat (42) and up postmortem accumulation has been shown to be biphasic
with an initial exponential phase followed by a linear
phase that continues for up to 2 h in the rat (42) and up
to 60 h, independent of age (1 to 84 yr), in human
caud with an initial exponential phase followed by a linear
phase that continues for up to 2 h in the rat (42) and up
to 60 h, independent of age $(1 \text{ to } 84 \text{ yr})$, in human
caudate-putamen $(43, 168)$. The biphasic curve fo phase that continues for up to 2 h in the rat (42) and up
to 60 h, independent of age (1 to 84 yr), in human
caudate-putamen (43, 168). The biphasic curve for early
time points in the rat (42) is presumably the result of
t to 60 h, independent of age $(1$ to 84 yr), in human caudate-putamen $(43, 168)$. The biphasic curve for early time points in the rat (42) is presumably the result of two processes. At early times following death, there caudate-putamen (43, 168). The biphasic curve for early
time points in the rat (42) is presumably the result of
two processes. At early times following death, there is an
initial rapid release of DA which has been determin time points in the rat (42) is presumably the result of two processes. At early times following death, there is an initial rapid release of DA which has been determined with push-pull perfusion studies (26) and brain dialy

PHARMACOLOGICAL REVIEWS

3-MT MEASUREMENTS AND DA RELEASE *IN VIVO* FROM NEURONS ¹⁶⁵

TABLE 1 *Explanation of ternu*

TTX Tetrodotoxin
U-50488H *trans-3*,4-Dichloro-N-methyl-N-[2-(1-pyrn
matic postmortem increase in 3-MT that results from a (20'
loss of monoamine oxidase (MAO) activity (MAO is an than
oxygen-dependent enzyme) and continue U-50488H Frans-3,4-Dichloro-N-methyl-N-
matic postmortem increase in 3-MT that results from
loss of monoamine oxidase (MAO) activity (MAO is a
oxygen-dependent enzyme) and continued COMT activ-
ity (168) which metabolicall matic postmortem increase in 3-MT that results from a (207 loss of monoamine oxidase (MAO) activity (MAO is an than oxygen-dependent enzyme) and continued COMT activ-
ity (168) which metabolically traps the released DA in matic postmortem increase in 3-MT that results from a (207
loss of monoamine oxidase (MAO) activity (MAO is an
oxygen-dependent enzyme) and continued COMT activ-
and
tity (168) which metabolically traps the released DA in
 loss of monoamine oxidase (MAO) activity (MAO is an thoxygen-dependent enzyme) and continued COMT activity (168) which metabolically traps the released DA in nthe form of 3-MT (fig. 1). These biphasic surges in 3 postmort oxygen-dependent enzyme) and continued COMT activ-
ity (168) which metabolically traps the released DA in atte technique of in situ freezing in liquid nitrogen yields
the form of 3-MT (fig. 1). These biphasic surges in 3ity (168) which metabolically traps the released DA in
the form of 3-MT (fig. 1). These biphasic surges in
postmortem DA release emphasize the requirement for
rapid (i.e., ms) inactivation of COMT, which has only
been ach the form of $3-MT$ (fig. 1). These biphasic surges in rapid (i.e., ms) inactivation of COMT, which has only

than sacrifice by freeze-blowing, since it is more rapid
(207). Microwave irradiation is also more convenient
than sacrifice by freeze-blowing, since it is more rapid
and allows microdissection of brain regions. The alter-Formally revendexy possesses and allows microdissection of brain regions. The alternate technique of in situ freezing in liquid nitrogen yield (207). Microwave irradiation is also more convenient
than sacrifice by freeze-blowing, since it is more rapid
and allows microdissection of brain regions. The alter-
nate technique of in situ freezing in liquid nitrogen yi (207). Microwave irradiation is also more convenient
than sacrifice by freeze-blowing, since it is more rapid
and allows microdissection of brain regions. The alter-
nate technique of in situ freezing in liquid nitrogen yi and allows microdissection of brain regions. The alternate technique of in situ freezing in liquid nitrogen yields MT levels which are intermediate between those ob-
ined by decapitation and microwave fixation (63).
Micropunch Methods
Micropunch techniques (136) allow discrete brain re-
pns to be microdissected from 250- to 1000-µm-thi

tained by decapitation and microwave fixation (63).
B. Micropunch Methods
Micropunch techniques (136) allow discrete brain re-
gions to be microdissected from 250- to 1000- μ m-thick

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

aspet

DOPAMINE METABOLISM

AD., aldehyde dehydrogenase (EC 1.2.1.3); *COMT,* catechol-O-meth- yltransferase (EC 2.1.1.6); *MAO,* **monoamine oxidase** (EC 1.4.3.4). FIG. 1. Metabolic routes for the degradation of DA in the CNS.
A.D., aldehyde dehydrogenase (EC 1.2.1.3); COMT, catechol-O-meth-
pltransferase (EC 2.1.1.6); MAO, monoamine oxidase (EC 1.4.3.4).
brain sections and have grea

HVA

ric. 1. Metabolic routes for the degradation of DA in the CNS.
A.D., aldehyde dehydrogenase (EC 1.2.1.3); COMT, catechol-O-meth-
yltransferase (EC 2.1.1.6); MAO, monoamine oxidase (EC 1.4.3.4).
brain sections and have gre resolution of neurochemical measurements of DA and its
metabolites (207).
C. Neuroanatomical Methods **Example 15 and have greatly
Fresolution of neurochemical methodites** (207).
C. Neuroanatomical Methods
Tyrosine hydroxylase immu

Tyrosine hydroxylase immunohistochemistry (117, 120), in situ hybridization of tyrosine hydroxylase mRNA (30), dopamine receptor binding (196), dopamine fluometabolites (207). 166)

C. Neuroanatomical Methods

Tyrosine hydroxylase immunohistochemistry (117, the n

120), in situ hybridization of tyrosine hydroxylase mRNA zyme

(30), dopamine receptor binding (196), dopamine flu C. Neuroanatomical Methods

Tyrosine hydroxylase immunohistochemistry (117

120), in situ hybridization of tyrosine hydroxylase mRNA

(30), dopamine receptor binding (196), dopamine fluo-

rescence microscopy (85, 118), qu by
Tyrosine hydroxylase immunohistochemistry (117, the
120), in situ hybridization of tyrosine hydroxylase mRNA zyn
(30), dopamine receptor binding (196), dopamine fluo-
rescence microscopy (85, 118), quantitative D-1 and Tyrosine hydroxylase immunohistochemistry (11
120), in situ hybridization of tyrosine hydroxylase mRN
(30), dopamine receptor binding (196), dopamine flu
rescence microscopy (85, 118), quantitative D-1 and D
receptor autor 120), in situ hybridization of tyrosine hydroxylase mRNA (30), dopamine receptor binding (196), dopamine fluorescence microscopy (85, 118), quantitative D-1 and D-2 (receptor autoradiography (9, 10), and fiber tracing met (30), dopamine receptor binding (196), dopamine fluorescence microscopy (85, 118), quantitative D-1 and D-2 receptor autoradiography (9, 10), and fiber tracing methods (178) have all been used to localize dopamine cell bod receptor autoradiography $(9, 10)$, and fiber tracing methods (178) have all been used to localize dopamine cell body and terminal areas in the brain. This data base is useful in the definition of brain regions to be mi useful in the definition of brain regions to be micro-

The first studies of drug effects on 3-MT dynamics dissected for neurochemical studies.

D. Analytical Methods

The first studies of drug effects on 3-MT dynamics

utilized fluorescence spectroscopy. With this technique,

baseline levels of 3-MT had to be elevated (99, 101 D. Analytical Methods
The first studies of drug effects on 3-MT dynamics
utilized fluorescence spectroscopy. With this technique,
baseline levels of 3-MT had to be elevated (99, 101) by
inhibition of 3-MT metabolism with m D. Analytical methods

The first studies of drug effects on 3-MT dynamics

utilized fluorescence spectroscopy. With this technique,

baseline levels of 3-MT had to be elevated (99, 101) by

inhibition of 3-MT metabolism w The first studies of drug effects on 3-MT dynamics
utilized fluorescence spectroscopy. With this technique,
baseline levels of 3-MT had to be elevated (99, 101) by
inhibition of 3-MT metabolism with monoamine oxidase
inhib utilized fluorescence spectroscopy. With this technique,
baseline levels of 3-MT had to be elevated (99, 101) by
inhibition of 3-MT metabolism with monoamine oxidase
inhibitors. Subsequently, several laboratories developed baseline levels of 3-MT had to be elevated (99, 101) by
inhibition of 3-MT metabolism with monoamine oxidase
inhibitors. Subsequently, several laboratories developed
a gas chromatography-mass fragmentographic (GC-MF)
assay inhibition of 3-MT metabolism with monoamine oxidase
inhibitors. Subsequently, several laboratories developed
a gas chromatography-mass fragmentographic (GC-MF)
assay using electron impact ionization (68, 105, 191, 225)
wh inhibitors. Subsequently, several laboratories developed
a gas chromatography-mass fragmentographic (GC-MF
assay using electron impact ionization (68, 105, 191, 225
which could detect striatal steady-state levels of 3-MT
i a gas chromatography-mass fragmentographic (GC-MF) assay using electron impact ionization (68, 105, 191, 225) which could detect striatal steady-state levels of 3-MT in animals sacrificed by focused microwave irradiation. negative chemical ionization conditions, which increased
by 42-fold the sensitivity of 3-MT measurements (63,
metabolism of DA. Intraneuronally, DA free in the cytosol is accessible which could detect striatal steady-state levels of 3-MT
in animals sacrificed by focused microwave irradiation.
This GC-MF assay was further improved by the use of
negative chemical ionization conditions, which increased
b in animals sacrificed by focused microwave irradia
This GC-MF assay was further improved by the u
negative chemical ionization conditions, which incre
by 42-fold the sensitivity of 3-MT measurements
206). Subsequently, hig This GC-MF assay was further improved by the use of
negative chemical ionization conditions, which increased
by 42-fold the sensitivity of 3-MT measurements (63,
 206). Subsequently, high-pressure liquid chromatogra-
phy negative chemical ionization conditions, which increased
by 42-fold the sensitivity of 3-MT measurements (63,
206). Subsequently, high-pressure liquid chromatogra-
phy methods were established (145, 201) which could
measur by 42-fold the sensitivity of 3-MT measurements (63, meta
206). Subsequently, high-pressure liquid chromatogra-
phy methods were established (145, 201) which could from
measure striatal and olfactory tubercle 3-MT levels 206). Subsequently, high-pressure liquid chromatog
phy methods were established (145, 201) which counneasure striatal and olfactory tubercle 3-MT levels b
not cortical 3-MT (201). For the measurements of 3-N
in less densel phy methods were established (145, 201) which could
measure striatal and olfactory tubercle 3-MT levels but
not cortical 3-MT (201). For the measurements of 3-MT
in less densely innervated brain regions, such as neocor-
ti measure striatal and olfactory tubercle 3-MT levels but
not cortical 3-MT (201). For the measurements of 3-MT
in less densely innervated brain regions, such as neocor-
tical areas innervated by mesocortical dopaminerigic

Native of ALTAR
Were required (213). These refinements involved the
inclusion of a simple organic solvent extraction of do-INCOTTAR

inclusion of a simple organic solvent extraction of do-

pamine and 3-MT from acidic tissue extracts to reduce parameter and 3-MT from acidic tissue extraction of do-
pamine and 3-MT from acidic tissue extracts to reduce
background noise (213). were required (213) . The inclusion of a simple organine and $3-MT$ from a background noise (213) . **Pamine and 3-MT from acidic tissue extracts to reduce background noise (213).**
 III. Biochemistry
 A. 3-MT Steady-State Levels
 I. Sources of 3-MT. As summarized in figs. 1 and 2,

III. **Biochemistry**

zyme immunohistochemistry (98) . These findings, and
studies of DA metabolite dynamics, have led to the
conclusions that DOPAC is an accurate index of intra-
DA Nerve Synaptic Postsynaptic conclusions that DOPAC is an accurate index of intra-*III.* Biochemistry
1. Sources of 3-MT. As summarized in figs. 1 and 2,
4 in dopaminergic nerve endings can be metabolized **III. Biochemistry**
 A. 3-MT Steady-State Levels
 DA in dopaminergic nerve endings can be metabolized
 DA in dopaminergic nerve endings can be metabolized
 intraneuronally (50, 108, 157, 199) by MAO to generate A. 3-MT Steady-State Levels
1. Sources of 3-MT. As summarized in figs. 1 and 2,
DA in dopaminergic nerve endings can be metabolized
intraneuronally (50, 108, 157, 199) by MAO to generate
dihydroxyphenylacetic acid (DOPAC). different actions of 3-MT. As summarized in figs. 1 and 2,
1. Sources of 3-MT. As summarized in figs. 1 and 2,
DA in dopaminergic nerve endings can be metabolized
intraneuronally (50, 108, 157, 199) by MAO to generate
dihy 1. Sources of 3-MT. As summarized in figs. 1 and 2,
DA in dopaminergic nerve endings can be metabolized
intraneuronally (50, 108, 157, 199) by MAO to generate
dihydroxyphenylacetic acid (DOPAC). This MAO pool
in the dopam intraneuronally (50, 108, 157, 199) by MAO to generate

dihydroxyphenylaete caid (DOPAC). This MAO pool

in the dopamine
rgic nerve endings of the rat striatum

has been shown with 6-hydroxydopamine lesions to be

monoami intraneuronally (50, 108, 157, 199) by MAO to generate
dihydroxyphenylacetic acid (DOPAC). This MAO pool
in the dopaminergic nerve endings of the rat striatum
has been shown with 6-hydroxydopamine lesions to be
monoamine o dihydroxyphenylacetic acid (DOPAC). This MAO po
in the dopaminergic nerve endings of the rat striatu
has been shown with 6-hydroxydopamine lesions to l
monoamine oxidase (type A) (MAO-A) (55, 123) and v
brain dialysis expe in the dopaminergic nerve endings of the rat striatum
has been shown with 6-hydroxydopamine lesions to be
monoamine oxidase (type A) (MAO-A) (55, 123) and via
brain dialysis experiments with selective MAO-A inhib-
itors (1 has been shown with 6-hydroxydopamine lesions to b
monoamine oxidase (type A) (MAO-A) (55, 123) and vi
brain dialysis experiments with selective MAO-A inhil
itors (100). In contrast, DA released into the synapt
cleft is in monoamine oxidase (type A) (MAO-A) (55, 123) and via
brain dialysis experiments with selective MAO-A inhib-
itors (100). In contrast, DA released into the synaptic
cleft is inactivated both by DA reuptake into the dopa-
mi brain dialysis experiments with selective MAO-A inhibitors (100). In contrast, DA released into the synaptic cleft is inactivated both by DA reuptake into the dopa-
minergic nerve ending and by methylation involving membra itors (100). In contrast, DA released into the synaptic
cleft is inactivated both by DA reuptake into the dopa-
minergic nerve ending and by methylation involving
membrane-bound COMT on postsynaptic neuronal ele-
ments (96 cleft is inactivated both by DA reuptake into the dopa
minergic nerve ending and by methylation involving
membrane-bound COMT on postsynaptic neuronal ele
ments (96, 98). Released DA is also taken up by glia (81
138) and p minergic nerve ending and by methylation involving
membrane-bound COMT on postsynaptic neuronal ele-
ments (96, 98). Released DA is also taken up by glia (81,
138) and possibly by local neurons. Within these com-
partments membrane-bound COMT on postsynaptic neuronal elements (96, 98). Released DA is also taken up by glia (81, 138) and possibly by local neurons. Within these compartments, DA is oxidized by MAO to form DOPAC (2, 55, 163, 175) 138) and possibly by local neurons. Within these compartments, DA is oxidized by MAO to form DOPAC (2, 55, 163, 175) and methylated by soluble COMT (96, 155, 166) to form 3-MT. Importantly, the dopaminergic nerve endings t 138) and possibly by local neurons. Within these compartments, DA is oxidized by MAO to form DOPAC (2, 55, 163, 175) and methylated by soluble COMT (96, 155, 166) to form 3-MT. Importantly, the dopaminergic nerve endings t partments, DA is oxidized by MAO to form DOPAC (2, 55, 163, 175) and methylated by soluble COMT (96, 155, 166) to form 3-MT. Importantly, the dopaminergic nerve endings themselves are devoid of COMT as determined by electr 55, 163, 175) and methylated by soluble COMT (96, 155, 166) to form 3-MT. Importantly, the dopaminergic nerve endings themselves are devoid of COMT as determined by electrolytic (96, 123) and chemical (2, 183) lesions of t 166) to form 3-MT. Importantly, the dopaminergic nerve
endings themselves are devoid of COMT as determined
by electrolytic (96, 123) and chemical (2, 183) lesions of
the nigrostriatal pathway and by observations with en-
z endings themselves are devoid of COMT as determined
by electrolytic (96, 123) and chemical (2, 183) lesions of
the nigrostriatal pathway and by observations with en-
zyme immunohistochemistry (98). These findings, and
stud by electrolytic (96, 123) and chemical (2, 183) lesions the nigrostriatal pathway and by observations with express immunohistochemistry (98). These findings, an studies of DA metabolite dynamics, have led to the conclusion

FIG. 2. Simplified working model of the neuronal and extraneuronal FIG. 2. Simplified working model of the neuronal and extraneuronal
metabolism of DA. Intraneuronally, DA free in the cytosol is accessible
to MAO and can be oxidized to form DOPAC which in turn can efflux
from the nerve en FIG. 2. Simplified working model of the neuronal and extraneuro
metabolism of DA. Intraneuronally, DA free in the cytosol is accessi
to MAO and can be oxidized to form DOPAC which in turn can eff
from the nerve ending to b n to immediate warming models in the cytosol is accessible
to MAO and can be oxidized to form DOPAC which in turn can efflux
from the nerve ending to be methylated to form the secondary metab-
olite HVA in both surrounding common or our manufactured in the manufacture of the domestic the domestic from the nerve ending to be methylated to form the secondary metabolite HVA in both surrounding glia and postsynaptic neurons. In the cleft, reupta from the nerve ending to be methylated to form the secondary metabolite HVA in both surrounding glia and postsynaptic neurons. In the cleft, reuptake of DA into the dopaminergic nerve ending, methylation by membrane-bound **form HVA.**

 $3-MT$ MEASUREMENTS AND DA RELEAS
neuronal DA metabolism (157, 199, 207) and that $3-MT$
is an index of DA release (207, 215), Homovanillic acid $3-MT$ MEASUREMENTS AND DA RELEA
neuronal DA metabolism (157, 199, 207) and that $3-MT$
is an index of DA release (207, 215), Homovanillic acid
(HVA) is a secondary metabolite of both DOPAC and $3-$ ³⁻MT MEASUREMENTS AND DA RELI
neuronal DA metabolism (157, 199, 207) and that 3-MT
is an index of DA release (207, 215), Homovanillic acid
(HVA) is a secondary metabolite of both DOPAC *and* 3-
MT and is therefore of lim meuronal DA metabolism (157, 199, 207) and that 3-MT
is an index of DA release (207, 215), Homovanillic acid
(HVA) is a secondary metabolite of both DOPAC and 3-
MT and is therefore of limited utility in defining the
effec neuronal DA metabolism (157, 199, 207) and that 3-MT
is an index of DA release (207, 215), Homovanillic acid
(HVA) is a secondary metabolite of both DOPAC *and* 3-
MT and is therefore of limited utility in defining the
eff is an index of DA release (207
(HVA) is a secondary metaboli
MT and is therefore of limite
ffects of experimental manip
lease or metabolism (fig. 1).
In the case of 3-MT, levels IVA) is a secondary metabolite of both DOPAC and 3-
T and is therefore of limited utility in defining the
fects of experimental manipulations on dopamine re-
see or metabolism (fig. 1).
In the case of 3-MT, levels of this

MT and is therefore of limited utility in defining the effects of experimental manipulations on dopamine release or metabolism (fig. 1).
In the case of 3-MT, levels of this metabolite will be influenced by two different c effects of experimental manipulations on dopamine release or metabolism (fig. 1).
In the case of 3-MT, levels of this metabolite will b
influenced by two different compartments which contain
COMT: the synaptic cleft and gl lease or metabolism (fig. 1).
In the case of 3-MT, levels of this metabolite will be
influenced by two different compartments which contain
COMT: the synaptic cleft and glia (96, 155). Importantly,
the generation of 3-MT i In the case of 3-MT, levels of this metabolite will be
influenced by two different compartments which contain
COMT: the synaptic cleft and glia (96, 155). Importantly,
the generation of 3-MT in *either* compartment require influenced by two different compartments which contain
COMT: the synaptic cleft and glia (96, 155). Importantly
the generation of 3-MT in *either* compartment require
prior DA release and therefore can serve as an index o
 COMT: the synaptic cleft and glia (96, 155). Importantly,
the generation of 3-MT in *either* compartment requires
prior DA release and therefore can serve as an index of
DA release. Thus, 3-MT is a relative, not a direct, the generation of 3-MT in *either* compartment requires
prior DA release and therefore can serve as an index of
DA release. Thus, 3-MT is a relative, not a direct, mea-
sure of DA release. The very rapid (5 to 10 min) chan prior DA release and therefore can serve as an index of DA release. Thus, 3-MT is a relative, not a direct, measure of DA release. The very rapid (5 to 10 min) changes in 3-MT following modifications of DA release (reviewe DA release. Thus, 3-MT is a relative, not a direct, m
sure of DA release. The very rapid (5 to 10 min) chan
in 3-MT following modifications of DA release (reviev
below) demonstrate the temporally close coupling
tween DA re sure of DA release. The very rapid
in 3-MT following modifications
below) demonstrate the temporative and 3-MT form
aptic compartments (215, 216).
2. Regional levels of 3-MT in ti 3-MT following modifications of DA release (reviewedow) demonstrate the temporally close coupling be
2. Phonometrical A regional 3-MT formation in these postsyntic compartments (215, 216).
2. *Regional levels of 3-MT*

below) demonstrate the temporally close coupling be-
tween DA release and 3-MT formation in these postsyn-
aptic compartments (215, 216).
2. Regional levels of 3-MT in the rat. A regional com-
parison of the steady-state l tween DA release and 3-MT formation in these postsyn-
aptic compartments $(215, 216)$.
2. Regional levels of 3-MT in the rat. A regional com-
parison of the steady-state levels of 3-MT in rat brain is
presented in table 2 aptic compartments $(215, 216)$.

2. Regional levels of $3-MT$ in the rat. A regional comparison of the steady-state levels of $3-MT$ in rat brain is

presented in table 2. The distribution of $3-MT$ levels

correlates well 2. Regional levels of $3-MT$ in the rat. A regional comparison of the steady-state levels of $3-MT$ in rat brain is presented in table 2. The distribution of $3-MT$ level correlates well with the associated regional levels o parison of the steady-state levels of $3-MT$ in rat brain is
presented in table 2. The distribution of $3-MT$ levels
correlates well with the associated regional levels of DA
(6). An excellent agreement is obtained from nin presented in table 2. The distribution of 3-MT levels correlates well with the associated regional levels of DA (6). An excellent agreement is obtained from nine laboratories for absolute steady-state concentrations of striated 3-MT in microwave fixed tissues. The only except (6). An excellent agreement is obtained from nine laboratories for absolute steady-state concentrations of striated 3-MT in microwave fixed tissues. The only exception is found in a report (190) in which case basal 3-MT ratories for absolute steady-state concentrations of stria-
tal 3-MT in microwave fixed tissues. The only exception
is found in a report (190) in which case basal 3-MT levels
were in the typical range of concentrations rep tal 3-MT in microwave fixed tissues. The only
is found in a report (190) in which case basal 3-
were in the typical range of concentrations re
animals killed by decapitation (68) . Clearly,
suffered from inadequate mic found in a report (190) in which case basal 3-MT levels
 3. Becies differences differences in 3-MT levels. Clearly, this study
 3. Species differences in 3-MT levels. Of the four species

which 3-MT has been measured f

were in the typical range of concentrations reported for
animals killed by decapitation (68). Clearly, this study
suffered from inadequate microwave fixation.
3. Species differences in 3-MT levels. Of the four species
in w animals killed by decapitation (68) . Clearly, this study
suffered from inadequate microwave fixation.
3. Species differences in 3 -MT levels. Of the four species
in which 3 -MT has been measured following microwave
ir suffered from inadequate microwave fixation.

3. Species differences in 3 -MT levels. Of the four species

in which 3 -MT has been measured following microwave

irradiation, steady-state 3 -MT levels in the mouse, gerb 3. Species differences in 3 -MT levels. Of the four specin which 3 -MT has been measured following microws irradiation, steady-state 3 -MT levels in the mouse, ger and hamster striatum are all significantly greater the in which 3-MT has been measured following microwave
irradiation, steady-state 3-MT levels in the mouse, gerbil,
and hamster striatum are all significantly greater than
those observed in the rat (table 3; ref. 207). In a co irradiation, steady-state 3-MT levels in the mouse, gerbil,
and hamster striatum are all significantly greater than
those observed in the rat (table 3; ref. 207). In a compar-
ison of the kinetics of 3-MT in the rat and mo and hamster striatum are all significantly greater than
those observed in the rat (table 3; ref. 207). In a compar-
ison of the kinetics of 3-MT in the rat and mouse (216),
the fractional rate constant (the proportion of t those observed in the rat (table 3; ref. 207). In a comparison of the kinetics of 3-MT in the rat and mouse (216), the fractional rate constant (the proportion of the 3-MT pool that is metabolized per unit time) was deter ison of the kinetics of 3-MT in the rat and mouse (216),
the fractional rate constant (the proportion of the 3-MT
pool that is metabolized per unit time) was determined
after pargyline treatment. The fractional rate consta the fractional rate constant (the proportion of the 3-MT
pool that is metabolized per unit time) was determined
after pargyline treatment. The fractional rate constant
was 3 times greater in rat striatum and 6 times greate pool that is metabolized per unit time) was determined
after pargyline treatment. The fractional rate constant
was 3 times greater in rat striatum and 6 times greater
in rat striatal dialysates than in the mouse. These da after pargyline treatment. The fractional rate constant was 3 times greater in rat striatum and 6 times greater in rat striatal dialysates than in the mouse. These data suggest either that a greater proportion of released was 3 times greater in rat striatum and 6 times greater
in rat striatal dialysates than in the mouse. These data
suggest either that a greater proportion of released DA
in the rat striatum is methylated to form 3-MT or th rat striatal dialysates than in the mouse. These data agrest either that a greater proportion of released DA
the rat striatum is methylated to form 3-MT or that
e clearance of 3-MT differs in these two species.
4. $3-MT$ *c*

suggest either that a greater proportion of released DA
in the rat striatum is methylated to form 3-MT or that
the clearance of 3-MT differs in these two species.
4. 3-MT conjugation. Virtually all 3-MT is in the free
(no in the rat striatum is methylated to form 3-MT or that
the clearance of 3-MT differs in these two species.
4. $3-MT$ conjugation. Virtually all 3-MT is in the free
(nonconjugated) form in both the rat (198) and mouse
(63) 4. 3-MT conjugation. Virtually all 3-MT is in the free
(nonconjugated) form in both the rat (198) and mouse
(63) striatum. However, in the cerebrospinal fluid (CSF)
of the squirrel monkey, dog, and human, 3-MT exists
main (nonconjugated) form in both the rat (198) and mouse (63) striatum. However, in the cerebrospinal fluid (CSF) of the squirrel monkey, dog, and human, 3-MT exists mainly in the conjugated form (63) . Both the human an (63) striatum. However, in the cerebrospinal fluid (CSF)
of the squirrel monkey, dog, and human, 3-MT exists
mainly in the conjugated form (63). Both the human and
squirrel monkey CSF contains approximately 1.2 pmol/
ml o of the squirrel monkey, dog, and human, 3-MT exists CO
mainly in the conjugated form (63). Both the human and
squirrel monkey CSF contains approximately 1.2 pmol/
ml of free 3-MT and 12 pmol/ml of conjugated 3-MT. It
from mainly in the conjugated form (63) . Both the human and squirrel monkey CSF contains approximately 1.2 pmol/ μ ml of free 3-MT and 12 pmol/ μ l of conjugated 3-MT. It from the reat brain but is further metabolized to squirrel monkey CSF contains approximately 1.2 pmol/
ml of free 3-MT and 12 pmol/ml of conjugated 3-MT. It
has been suggested that 3-MT is not cleared from the
rat brain but is further metabolized to HVA, since brain
3-MT ml of free 3-MT and 12 pmol/ml of conjugated 3-MT. It
has been suggested that 3-MT is not cleared from the
rat brain but is further metabolized to HVA, since brain
3-MT levels are stable for more than 3 h after inhibition
 has been suggested that 3-MT is not cleared from the rat brain but is further metabolized to HVA, since brain 3-MT levels are stable for more than 3 h after inhibition of DA synthesis with alpha-methylparatyrosine (AMPT) i **B. 3-MT levels are stable for more than 3-MT levels are stable for more than 4-ME of DA synthesis with alpha-methyly in combination with monoamine of B. 3-Methoxytyramine Dynamics** 1. Enzyme inhibition. a. 3-MT ACC DA synthesis with alpha-methylparatyrosine (AMPT)
combination with monoamine oxidase inhibition (79).
3-*Methoxytyramine Dynamics*
1. *Enzyme inhibition*. a. 3-MT ACCUMULATION. In most
ain regions, the steady-state levels

TABLE 2 *Regional dopamine and 3-MT levels and 3-MTfractionoi rate constants for microwave-irradiated rat brain*

Region	Dopamine (pmol/mg protein)	$3-MT$	3-MT, $k(hr^{-1})$	Ref.
Striatum	670	2.9		77
		2.3		68
		1.5		78
		2.3		58
		2.4		47
		1.5		121
	642	1.4		225
	607	1.9	36.4	191
	497	1.1		145
	649	1.9		224
	588	1.8		211
	511	1.2	18.1	202
	520	2.0	17.7	203
	660	2.0	12.9	212
	590	2.5		128
	633	1.9		217
	388	2.2	8.9	160
	664	2.2	17.3	213
	597	2.8		94
	416	1.9		8
	456	2.7		6
	937	8.4		190
Nucleus accum- bens	429	2.4	$10.4*$	94
Olfactory tubule		1.7	8†	202
	485	1.7		6
	485	1.7	6.6	214
Prefrontal cortex	18	0.11	9.1	213
Cingulate cortex	11	0.11	15.5	213
	15	0.16		6
Hypothalamus	36	0.26		6
Entorhinal cortex	21	0.40		6
Hippocampus	15	0.25		6

* Unpublished observations.

^t Estimate based on one accumulation point after pargyline.

4. 3-MT conjugation. Virtually all 3-MT is in the free
(nonconjugated) form in both the rat (198) and mouse
(63) striatum. However, in the cerebrospinal fluid (CSF) monitoring the decline in 3-MT after treatment with the
 in combination with monoamine oxidase inhibition (79). accumulation in the rat nucleus accumbens after inhibition B . 3-Methoxytyramine Dynamics
B. 3-Methoxytyramine Dynamics
I. Enzyme inhibition. a. 3-MT ACCUMULATION. I Hippocampus 15 0.25 6

* Unpublished observations.

† Estimate based on one accumulation point after pargyline.

than 1% of the DA steady-state levels (table 2). However,

when the dynamics of this pool are examined either When the dynamics of this pool are examined either by
than 1% of the DA steady-state levels (table 2). However,
when the dynamics of this pool are examined either by
monitoring the decline in 3-MT after treatment with the monitoring the decline in 3-MT after pargyline.
than 1% of the DA steady-state levels (table 2). However,
when the dynamics of this pool are examined either by
monitoring the decline in 3-MT after treatment with the
COMT i than 1% of the DA steady-state levels (table 2). However,
when the dynamics of this pool are examined either by
monitoring the decline in 3-MT after treatment with the
COMT inhibitor, tropolone (191, 201), or by monitoring than 1% of the DA steady-state levels (table 2). However,
when the dynamics of this pool are examined either by
monitoring the decline in 3-MT after treatment with the
COMT inhibitor, tropolone (191, 201), or by monitoring when the dynamics of this pool are examined either by
monitoring the decline in 3-MT after treatment with the
COMT inhibitor, tropolone (191, 201), or by monitoring
the accumulation of 3-MT after inhibition of MAO with
pa COMT inhibitor, tropolone (191, 201), or by monitoring
the accumulation of 3-MT after inhibition of MAO with
pargyline (212, 213), fractional rate constants ranging
from 7 to 19 h⁻¹ are obtained depending upon the brain the accumulation of 3-MT after inhibition of MAO with
pargyline (212, 213), fractional rate constants ranging
from 7 to 19 h⁻¹ are obtained depending upon the brain
region examined. A high rate constant of 36 was report from 7 to 19 h^{-1} are obtained depending upon the brain region examined. A high rate constant of 36 was reported in one study (191), but this was based on the use of only a zero time group and a group sacrificed after 1 region examined. A high rate constant of 36 was reported treatment with tropolone. In fig. 3, an example of 3-MT in one study (191), but this was based on the use of only
a zero time group and a group sacrificed after 1-min
treatment with tropolone. In fig. 3, an example of 3-MT
accumulation in the rat nucleus accumbens after inhibia zero time group and a group sacrificed after 1-min
treatment with tropolone. In fig. 3, an example of 3-MT
accumulation in the rat nucleus accumbens after inhibi-
tion of MAO with pargyline is presented. A comparison
of treatment with tropolone. In fig. 3, an example of 3-MT accumulation in the rat nucleus accumbens after inhibition of MAO with pargyline is presented. A comparison of the dynamics of 3-MT compared to the DA pool and other accumulation in the rat nucleus accumbens after inhibition of MAO with pargyline is presented. A comparison of the dynamics of 3-MT compared to the DA pool and other metabolite pools is presented in table 4. These data ind

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

REVIEW

Pool	Steady state (pmol/mg protein)	k (h^{-1})	Turnover rate (pmol/mg protein/h)
DA	$620 \pm 15^*$	0.21	130 ± 6
$3-MT$	2 ± 0.1	12.9	26 ± 2
DOPAC	68 ± 3	2.3	156 ± 10
HVA	58 ± 2	$1.3\,$	75 ± 4
	* Mean \pm SEM $(n = 7 \text{ to } 10)$.		

HVA 58 ± 2 1.3 75 ± 4

* Mean \pm SEM $(n = 7 \text{ to } 10)$.

to DA, DOPAC, or HVA, 3-MT is the most dynamic DA

metabolite with a fractional rate constant of 12.9 h⁻¹.

These rapid dynamics of the 3-MT pool are also obs * Mean \pm SEM $(n = 7 \text{ to } 10)$.

to DA, DOPAC, or HVA, 3-MT is the most dynamic DA

metabolite with a fractional rate constant of 12.9 h⁻¹.

These rapid dynamics of the 3-MT pool are also observed

with precursor label sta
to DA, DOPAC, or HVA, 3-MT is the most dynamic DA vat
metabolite with a fractional rate constant of 12.9 h⁻¹. hig
These rapid dynamics of the 3-MT pool are also observed face
with precursor labeling studies. For exam to DA, DOPAC, or HVA, 3-MT is the most dynamic
metabolite with a fractional rate constant of 12.9
These rapid dynamics of the 3-MT pool are also obse
with precursor labeling studies. For example, after
intraventricular (77 metabolite with a fractional rate constant of $12.9 h^{-1}$. These rapid dynamics of the 3-MT pool are also observed factorially with precursor labeling studies. For example, after both do intraventricular (77) and intraveno These rapid dynamics of the 3-MT pool are also observed
with precursor labeling studies. For example, after both
intraventricular (77) and intravenous (185) administra-
tion of $[^3H]$ tyrosine, 3-MT is the DA metabolite wi with precursor labeling studies. For example, aftituded intraventricular (77) and intravenous (185) adm
tion of [³H] tyrosine, 3-MT is the DA metabolite v
highest specific activity, supporting a preferential
released DA traventricular (77) and intravenous (185) administration of [³H]tyrosine, 3-MT is the DA metabolite with the ghest specific activity, supporting a preferential flux cleased DA through the 3-MT metabolic pool.
b. MULTIPLE tion of [³H]tyrosine, 3-MT is the DA metabolite with the highest specific activity, supporting a preferential flux of released DA through the 3-MT metabolic pool.
b. MULTIPLE DA POOLS. One complication in interpreting DA

highest specific activity, supporting a preferential flux
released DA through the 3-MT metabolic pool.
b. MULTIPLE DA POOLS. One complication in inte
preting DA metabolite changes is the possibility of mu
tiple DA pools wh released DA through the 3-MT metabolic pool.
b. MULTIPLE DA POOLS. One complication in inter-
preting DA metabolite changes is the possibility of mul-
tiple DA pools which can be mobilized to support trans-
mission. Early

WOOD AND ALTAR
in resolving the different DA pools available for release
 $\frac{e^{rC}}{rC}$ (50, 199). However, studies using in vivo voltammetry in (50, 199).

Suppose the different DA pools available for release

(50, 199). However, studies using in vivo voltammetry in

the rat striatum along with electrical stimulation of the In resolving the different DA pools available for release (50, 199). However, studies using in vivo voltammetry in the rat striatum along with electrical stimulation of the medial forebrain bundle (MFB) have indicated that in resolving the different DA pools available for release (50, 199). However, studies using in vivo voltammetry in the rat striatum along with electrical stimulation of the medial forebrain bundle (MFB) have indicated tha in resolving the different DA pools available for release (50, 199). However, studies using in vivo voltammetry in the rat striatum along with electrical stimulation of the medial forebrain bundle (MFB) have indicated tha (50, 199). However, studies using in vivo voltammetry in
the rat striatum along with electrical stimulation of the
medial forebrain bundle (MFB) have indicated that the
rate constant for the releasable DA pool is $2.76 \text{$ the rat striatum along with electrical stimulation of t
medial forebrain bundle (MFB) have indicated that t
rate constant for the releasable DA pool is 2.76 h^{-1} (13
A similar value of 2.5 was obtained for the extrac medial forebrain bundle (MFB) have indicated that the rate constant for the releasable DA pool is $2.76 h^{-1}$ (130). A similar value of 2.5 was obtained for the extracellular DA pool in the rat striatum after treatment w rate constant for the releasable DA pool is $2.76 h^{-1}$ (130).
A similar value of 2.5 was obtained for the extracellular
DA pool in the rat striatum after treatment with pargy-
line (fig. 4) and monitoring DA release with A similar value of 2.5 was obtained for the extracellular
DA pool in the rat striatum after treatment with pargy-
line (fig. 4) and monitoring DA release with striatal
dialysis (215, 216). These values are approximately 10 DA pool in the rat striatum after treatment with pargy-
line (fig. 4) and monitoring DA release with striatal
dialysis (215, 216). These values are approximately 10
times the values obtained for the turnover of the total
D line (fig. 4) and monitoring DA release with striatal dialysis (215, 216). These values are approximately 10 times the values obtained for the turnover of the total DA pool using precursor labels or inhibition of synthesis dialysis (215, 216). These values are approximately 10 times the values obtained for the turnover of the total DA pool using precursor labels or inhibition of synthesis (108, 199). These data suggest that the releasable po times the values obtained for the turnover of the total
DA pool using precursor labels or inhibition of synthesis
(108, 199). These data suggest that the releasable pool of
DA is smaller and more dynamic than the total neu DA pool using precursor labels or inhibition of synthesis (108, 199). These data suggest that the releasable pool of DA is smaller and more dynamic than the total neuronal stores of DA within the striatum (216). Studies o (108, 199). These data suggest that the releasable pool of DA is smaller and more dynamic than the total neuronal stores of DA within the striatum (216). Studies of the dynamics of the recovery of DA release in the striat DA is smaller and more dynamic than the total neuronal
stores of DA within the striatum (216). Studies of the
dynamics of the recovery of DA release in the striatum
after 10-Hz electrical stimulation of the MFB have sug-
g stores of DA within the striatum (216). Studies of the
dynamics of the recovery of DA release in the striatum
after 10-Hz electrical stimulation of the MFB have sug-
gested that, acutely (from 0.5 to 2 min), this process
i dynamics of the recovery of DA release in the striatum
after 10-Hz electrical stimulation of the MFB have sug-
gested that, acutely (from 0.5 to 2 min), this process
involves DA mobilization from another pool and does
not after 10-Hz electrical stimulation of the MFB have suggested that, acutely (from 0.5 to 2 min), this process involves DA mobilization from another pool and does not involve DA synthesis except in the case of continued long gested that, acutely (from 0.5 to 2 min), this process
involves DA mobilization from another pool and does
not involve DA synthesis except in the case of continued
longer term stimulation (129). The roles of multiple
vesic involves DA mobilization from another pool and does
not involve DA synthesis except in the case of continued
longer term stimulation (129). The roles of multiple
vesicular and/or cytosolic DA pools remain to be defined.
Ho not involve DA synthesis except in the case of continued
longer term stimulation (129). The roles of multiple
vesicular and/or cytosolic DA pools remain to be defined.
However, in the same paradigm, amfonelic acid was
sho longer term stimulation (129). The roles of multiple vesicular and/or cytosolic DA pools remain to be defined.
However, in the same paradigm, amfonelic acid was shown to mobilize a DA pool after inhibition of DA vesicular and/or cytosolic DA pools remain to be defined.
However, in the same paradigm, amfonelic acid was
shown to mobilize a DA pool after inhibition of DA
synthesis with AMPT (59). These data support the con-
cept of m However, in the same paradigm, amfonelic acid was
shown to mobilize a DA pool after inhibition of DA
synthesis with AMPT (59). These data support the con-
cept of multiple vesicular DA pools (77). Reserpine ex-
periments shown to mobilize a DA pool after inhibition of synthesis with AMPT (59). These data support the coept of multiple vesicular DA pools (77). Reserpine periments also support the role of a nonvesicular is pool in some drug e cept of multiple vesicular DA pools (77) . Reserpine experiments also support the role of a nonvesicular DA pool in some drug effects $(197, 202)$. This pool contributes to approximately 20% of the 3-MT steady-state l cept of multiple vesicular DA pools (77). Reserpine experiments also support the role of a nonvesicular DA pool in some drug effects (197, 202). This pool contributes to approximately 20% of the 3-MT steady-state levels ob periments also support the role of a nonvesicular DA
pool in some drug effects (197, 202). This pool contrib-
utes to approximately 20% of the 3-MT steady-state
levels observed in the rat striatum (216) with the re-
mainin pool in some drug effects (197, 202). This pool contributes to approximately 20% of the 3-MT steady-state levels observed in the rat striatum (216) with the remaining 80% presumably being derived from vesicular DA pools.

maining 80% presumably being derived from vesicular
DA pools.
c. 3-MT ACCUMULATION VERSUS STEADY-STATE MEAS-
UREMENTS. The accumulation of 3-MT after inhibition
of MAO has been used to measure, via 3-MT, the effects
of dru DA pools.

c. 3-MT ACCUMULATION VERSUS STEADY-STATE MEAS-

UREMENTS. The accumulation of 3-MT after inhibition

of MAO has been used to measure, via 3-MT, the effects

of drugs on dopamine release. Pargyline (75 to 100 mg/ c. 3-MT ACCUMULATION VERSUS STEADY-STATE MEASUREMENTS. The accumulation of 3-MT after inhibition
of MAO has been used to measure, via 3-MT, the effects
of drugs on dopamine release. Pargyline (75 to 100 mg/
kg i.p.) elevat UREMENTS. The accumulation of 3-MT after inhibition
of MAO has been used to measure, via 3-MT, the effec
of drugs on dopamine release. Pargyline (75 to 100 m
kg i.p.) elevates striatal 3-MT levels by 10- to 18-fo
within 20 of MAO has been used to measure, via 3-MT, the effects
of drugs on dopamine release. Pargyline $(75 \text{ to } 100 \text{ mg/m})$
kg i.p.) elevates striatal 3-MT levels by 10- to 18-fold
within 20 min to 3 h postinjection $(102, 160)$ of drugs on dopamine release. Pargyl
kg i.p.) elevates striatal 3-MT levels
within 20 min to 3 h postinjection (1
tates detection of this metabolite norm
(1 to 6 pmol/mg of protein) amounts.
An important aspect in monitori i. i.p.) elevates striatal 3-MT levels by 10- to 18-fold
thin 20 min to 3 h postinjection (102, 160) and facili-
tes detection of this metabolite normally found in trace
to 6 pmol/mg of protein) amounts.
An important aspe

within 20 min to 3 h postinjection (102, 160) and facili-
tates detection of this metabolite normally found in trace
(1 to 6 pmol/mg of protein) amounts.
An important aspect in monitoring 3-MT dynamics
after MAO inhibition tates detection of this metabolite normally found in trace
(1 to 6 pmol/mg of protein) amounts.
An important aspect in monitoring 3-MT dynamics
after MAO inhibition with pargyline is the mode of
animal sacrifice. Historica (1 to 6 pmol/mg of protein) amounts.

An important aspect in monitoring 3-MT dynam

after MAO inhibition with pargyline is the mode

animal sacrifice. Historically, when methods such

microwave fixation were unavailable t An important aspect in monitoring 3-MT dynamics
after MAO inhibition with pargyline is the mode of
animal sacrifice. Historically, when methods such as
microwave fixation were unavailable to measure steady-
state 3-MT leve after MAO inhibition with pargyline is the mode of animal sacrifice. Historically, when methods such as microwave fixation were unavailable to measure steady-
state 3-MT levels, baseline values were artificially elevated b animal sacrifice. Historically, when methods such a
microwave fixation were unavailable to measure steady
state 3-MT levels, baseline values were artificially ele
vated by decapitation and drug effects monitored on thi
hig microwave fixation were unavailable to measure steady-
state 3-MT levels, baseline values were artificially ele-
vated by decapitation and drug effects monitored on this
higher baseline (99, 101, 102). This approach was sa state 3-MT levels, baseline values were artificially elevated by decapitation and drug effects monitored on this higher baseline (99, 101, 102). This approach was satisfactory in situations where profound drug effects on d vated by decapitation and drug effects monitored on this
higher baseline (99, 101, 102). This approach was satis-
factory in situations where profound drug effects on
dopamine release were studied (table 5). However, other higher baseline (99, 101, 102). This approach was satis-
factory in situations where profound drug effects on
dopamine release were studied (table 5). However, other
effects on steady-state 3-MT levels, such as those ob-
t factory in situations where profound drug effects dopamine release were studied (table 5). However, other effects on steady-state 3-MT levels, such as those contained with DA uptake blockers (58), were inconclusion in deca dopamine release were studied (table 5). However, other
effects on steady-state 3-MT levels, such as those ob-
tained with DA uptake blockers (58), were inconclusive
using pargyline-dependent 3-MT accumulation in decap-
it effects on steady-state 3-MT levels, such as those obtained with DA uptake blockers (58), were inconclusive using pargyline-dependent 3-MT accumulation in decapitated rats (99). This is likely to have been the result of th tained with DA uptake blockers (58), were inconclusive
using pargyline-dependent 3-MT accumulation in decap-
itated rats (99). This is likely to have been the result of
the rapid postmortem increases in 3-MT which masks
su using pargyline-dependent 3-MT accumulation in decaproacht it atted rats (99). This is likely to have been the result the rapid postmortem increases in 3-MT which mask such subtle drug effects (202). Clearly, it is advisab itated rats (99). This is likely to have been the result of the rapid postmortem increases in 3-MT which masks such subtle drug effects (202). Clearly, it is advisable even when monitoring pargyline-dependent 3-MT accumula

PHARMACOLOGI

aspet

Hours FIG. 4. Actions of pargyline *(PARG)* on the levels of 3-MT, DA, DOPAC, and HVA collected in rat striatal dialysates. Values are the mean ± SEM for 10-min collection periods of 5 animals (215). **4** Hours

Importantly, the increases in rat striatal 3-MT levels

Importantly, the increases in rat striatal 3-MT levels

sarly preceded the increases in DOPAC and HVA (fig. AC, and HVA collected in rat striatal dialysates. Values are the mean
Importantly, the increases in rat striatal 3-MT levels
clearly preceded the increases in DOPAC and HVA (fig.
5), indicating that changes in DA release a From the individual material changes in the set of the mean changes clearly preceded the increases in DOPAC and HVA (fig. 5), indicating that changes in DA release are detected prior to alterations in intraneuronal synthes Importantly, the increases in rat striatal 3-M?
clearly preceded the increases in DOPAC and H⁵
5), indicating that changes in DA release are d
prior to alterations in intraneuronal synthesis/n
lism of DA. Of interest, wh Importantly, the increases in rat striatal 3-MT levels
clearly preceded the increases in DOPAC and HVA (fig.
5), indicating that changes in DA release are detected
prior to alterations in intraneuronal synthesis/metabo-
li clearly preceded the increases in DOPAC and HVA (fig.
5), indicating that changes in DA release are detected
prior to alterations in intraneuronal synthesis/metabo-
lism of DA. Of interest, when either striatal steady-stat 5), indicating that changes in DA release are detected
prior to alterations in intraneuronal synthesis/metabo-
lism of DA. Of interest, when either striatal steady-state
3-MT levels (219) or DA in striatal dialysates (90) prior to alterations in intraneuronal synthesis/metabolism of DA. Of interest, when either striatal steady-state 3-MT levels (219) or DA in striatal dialysates (90) are monitored after electrical stimulation of the substan lism of DA. Of interest, when either striatal steady-st
3-MT levels (219) or DA in striatal dialysates (90)
monitored after electrical stimulation of the substar
nigra, both parameters increase with stimulation is
quencies 3-MT levels (219) or DA in striatal dialysates (90) are
monitored after electrical stimulation of the substantia
nigra, both parameters increase with stimulation fre-
quencies between 2 and 5 Hz and plateau at approxi-
ma monitored after electrical stimulation of the substantigra, both parameters increase with stimulation quencies between 2 and 5 Hz and plateau at appromately 20 Hz. At 100 Hz, striatal 3-MT levels begine reverse and decreas

FIG. 4. Actions of pargyline ($PARG$) on the levels of 3-MT, DA, \pm SEM for 10-min collection periods of 5 animals (215).
nating this potential postmortem artifact. However, compared to 3-MT determinations in the brains o FIG. 4. Actions of pargying $(PANO)$ on the levels of 3- $M1$, DA, DOFT
 \pm SEM for 10-min collection periods of 5 animals (215).

nating this potential postmortem artifact. However, com-

pared to 3-MT determinations in t (15, 185, 16, 16-film conceased periods of o animals (210).

15, 185, 203), the pargyline accumulation technique is pridised

15, 185, 203), the pargyline accumulation technique is pridised

15, 185, 203), the pargyline ac nating this potential postmortem artifact. However, compared to 3-MT determinations in the brains of drug-
treated animals killed by focused microwave irradiation
(15, 185, 203), the pargyline accumulation technique is
dis pared to 3-MT determinations in the brains of drug-
treated animals killed by focused microwave irradiation
(15, 185, 203), the pargyline accumulation technique is
disadvantageous for several reasons. (a) Pargyline pre-
tr treated animals killed by focused microwave irradiation 5)

(15, 185, 203), the pargyline accumulation technique is

plisadvantageous for several reasons. (a) Pargyline pre-

listreatment prevents basal measurements of DO (15, 185, 203), the pargyline accumulation technique is
disadvantageous for several reasons. (a) Pargyline pre-
treatment prevents basal measurements of DOPAC,
HVA, and dopamine and thereby precludes inferences of
dopam disadvantageous for several reasons. (a) Pargyline pre-
treatment prevents basal measurements of DOPAC,
HVA, and dopamine and thereby precludes inferences of
dopamine metabolism based on the acid metabolite lev-
els. (b) T treatment prevents basal measurements of DOPAC,
HVA, and dopamine and thereby precludes inferences of
dopamine metabolism based on the acid metabolite lev-
els. (b) The pargyline accumulation technique dampens
the magnitud HVA , and dopamine and thereby precludes inferences of dopamine metabolism based on the acid metabolite levels. (b) The pargyline accumulation technique dampens the magnitude of changes in $3-MT$ following treatment with a dopamine metabolism based on the acid metabolite lev-
els. (b) The pargyline accumulation technique dampens
the magnitude of changes in 3-MT following treatment
with agents that decrease dopamine neuron impulse con-
ductio els. (b) The pargyline accumulation technique damper
the magnitude of changes in 3-MT following treatme
with agents that decrease dopamine neuron impulse conduction, including gamma-butyrolactone (GBL) or ap
morphine (6, 1 the magnitude of changes in 3-MT following treatment
with agents that decrease dopamine neuron impulse con-
duction, including gamma-butyrolactone (GBL) or apo-
morphine (6, 160), and drugs like haloperidol and chlor-
prom with agents that decrease dopamine neuron impulse chuction, including gamma-butyrolactone (GBL) or a morphine (6, 160), and drugs like haloperidol and cheromazine, which increase impulse conduction. Fin (c) MAO inhibition duction, including gamma-butyrolactone (GBL) or apo-
morphine (6, 160), and drugs like haloperidol and chlor-
promazine, which increase impulse conduction. Finally
(c) MAO inhibition adds pharmacological and physiolog-
ic morphine $(6, 160)$, and drugs like haloperidol and chlor-
promazine, which increase impulse conduction. Finally
 (c) MAO inhibition adds pharmacological and physiolog-
ical complexities to the experimental design and thu promazine, which i

(c) MAO inhibition

ical complexities t

weakens interpreta

drug under study.

2. Electrical stim *2. MAO* inhibition adds pharmacological and physiolog-

2. Electrical stimulations of the actions on release of the

2. Electrical stimulation. In studies (219) of electrical

2. Electrical stimulation. In studies (219) o ical complexities to the experimental design and thus
weakens interpretations of the actions on release of the
drug under study.
2. Electrical stimulation. In studies (219) of electrical
stimulation of the substantia nigra

weakens interpretations of the actions on release of the
drug under study.
2. Electrical stimulation. In studies (219) of electrical
stimulation of the substantia nigra of unanesthetized
rats, frequency-dependent increases drug under study.

2. Electrical stimulation. In studies (219) of electrical $\frac{3. \text{ At}}{3. \text{ At}}$

stimulation of the substantia nigra of unanesthetized MT lev

rats, frequency-dependent increases in striatal 3-MT, by mic 2. Electrical stimulation. In studies (219) of electrical stimulation of the substantia nigra of unanesthetized rats, frequency-dependent increases in striatal 3-MT, DOPAC, and HVA were observed with no changes in DA stead stimulation of the substantia nigra of unanesthetized rats, frequency-dependent increases in striatal 3-MT, DOPAC, and HVA were observed with no changes in DA steady-state concentrations. Similar data have been obtained wi rats, frequency-dependent increases in striatal 3-MDOPAC, and HVA were observed with no changes in lasteady-state concentrations. Similar data have been cained with ventricular perfusates of the anesthetized in which incre DOPAC, and HVA were observed with no changes in I
steady-state concentrations. Similar data have been c
tained with ventricular perfusates of the anesthetized of
in which increased efflux into the ventricles of radio
beled steady-state concentrations. Similar data have been obtained with ventricular perfusates of the anesthetized cat
in which increased efflux into the ventricles of radiola-
beled DA and 3-MT was observed during nigral stimu-

atal fibers cannot sustain transmission at this high frequency rate. Similarly, in vivo voltammetry studies ha
indicated that, with electrical stimulation of the r
medial forebrain bundle, DA neurons can follow stim
lation quency rate. Similarly, in vivo voltammetry studies ha
indicated that, with electrical stimulation of the 1
medial forebrain bundle, DA neurons can follow stim
lation frequencies between 25 and 50 Hz but that trar
mission dicated that, with electrical stimulation of the rat
edial forebrain bundle, DA neurons can follow stimu-
tion frequencies between 25 and 50 Hz but that trans-
ission begins to fail between 100 and 200 Hz (171).
3. Attenua medial forebrain bundle, DA neurons can follow stimulation frequencies between 25 and 50 Hz but that transmission begins to fail between 100 and 200 Hz (171).
3. Attenuation of DA neuronal impulse flow. Striatal 3-
MT lev lation frequencies between 25 and 50 Hz but that transmission begins to fail between 100 and 200 Hz (171).
3. Attenuation of DA neuronal impulse flow. Striatal 3-
MT levels (102) and the amount of dopamine measured
by micr mission begins to fail between 100 and 200 Hz (171).
3. Attenuation of DA neuronal impulse flow. Striatal 3-
MT levels (102) and the amount of dopamine measured
by microdialysis (227) are decreased by cessation of
nigrostr 3. Attenuation of DA neuronal impulse flow. Striatal 3-
MT levels (102) and the amount of dopamine measured
by microdialysis (227) are decreased by cessation of
nigrostriatal impulse flow following i.p. injections of
 MT levels (102) and the amount of dopamine measured
by microdialysis (227) are decreased by cessation of
nigrostriatal impulse flow following i.p. injections of
GBL. The suppression of dopamine release by GBL has
been subs by microdialysis (227)
nigrostriatal impulse 1
GBL. The suppression
been substantiated by e
havioral (14) measures.
In contrast, DOPAC¹ grostriatal impulse flow following i.p. injections of
BL. The suppression of dopamine release by GBL has
en substantiated by electrophysiological (158) and be-
vioral (14) measures.
In contrast, DOPAC and HVA levels *incre* GBL. The suppression of dopamine release by GBL has
been substantiated by electrophysiological (158) and be-
havioral (14) measures.
In contrast, DOPAC and HVA levels *increase* following
cessation of impulse flow (194). T

nigra, both parameters increase with stimulation frequencies between 2 and 5 Hz and plateau at approximately 20 Hz. At 100 Hz, striatal 3-MT levels begin to reverse and decrease (219), indicating that the nigrostriatal fib mately 20 Hz. At 100 Hz, striatal 3-MT levels begin to reverse and decrease (219), indicating that the nigrostriatal fibers cannot sustain transmission at this high frequency rate. Similarly, in vivo voltammetry studies ha mately 20 Hz. At 100 Hz, striatal 3-MT levels begin to
reverse and decrease (219), indicating that the nigrostri-
atal fibers cannot sustain transmission at this high fre-
quency rate. Similarly, in vivo voltammetry studie atal fibers cannot sustain transmission at this high frequency rate. Similarly, in vivo voltammetry studies have indicated that, with electrical stimulation of the rat medial forebrain bundle, DA neurons can follow stimu-

¹⁷⁰ **WOOD AND ALTAR TABLE 5**
Actions of drugs on accumulation of 3-MT after inhibition of MAO

Drug	Dose (mg/kg)	Duration (min)	Route	Species	Tissue	3-MT accumulation (% of control)	Ref.
Stimulants							
Amphetamine	3	60	i.v.	Rabbit	Striatum	440	79
Methamphetamine	7	60	i.p.	Mouse	$W.B.*$	216	135
	1	90	i.p.	Rat	W.B.	136	99
	3	90	i.p.	Rat	W.B.	174	99
Cocaine	3	90	i.p.	Rat	W.B.	100	99
	10	90	i.p.	Rat	W.B.	123	99
	30	90	i.p.	Rat	W.B.	225	99
	3	60	i.v.	Rabbit	Striatum	100	79
Desipramine	15	90	i.p.	Rat	W.B.	100	99
	45	90	i.p.	Rat	W.B.	149	99
Imipramine	50	2700	s.c.	Rat	W.B.	100	165
Depressants							
Diazepam	3	90	i.p.	Rat	W.B.	85	99
	10	90	i.p.	Rat	W.B.	87	99
	30	90	i.p.	Rat	W.B.	77	99
Ethanol	2360	90	p.o.	Mouse	W.B.	47	116
GBL	750	30	i.p.	Rat	Striatum	46	101
R-PIA	3	60	i.p.	Rat	Striatum	78	133
Adrenergics							
POB	30	90	i.p.	Rat	W.B.	100	99
Propanolol	30	90	i.p.	Rat	W.B.	100	99
Clonidine	10	90	i.p.	Rat	W.B.	100	99
Dopamine agonists							
Apomorphine	3	90	i.p.	Rat	W.B.	100	99
	10	90	i.p.	Rat	W.B.	73	99
Neuroleptics							
Haloperidol	0.3	90	i.p.	Rat	W.B.	224	99
	$\mathbf{1}$	90	i.p.	Rat	W.B.	289	99
	3	90	i.p.	Rat	W.B.	288	99
	0.5	90	i.p.	Rat	Striatum	385	160
	1	45	i.p.	Rat	Striatum	245	160
CPZ	1	90	i.p.	Rat	W.B.	151	99
	3	90	i.p.	Rat	W.B.	205	99
	10	90	i.p.	Rat	W.B.	311	99
	10	120	i.v.	Rabbit	Striatum	672	79
	10	45	i.p.	Rat	Striatum	160	101
	10	2700	8.C.	Rat	W.B.	235	165
Fluphenazine	1	45	i.p.	Rat	Striatum	190	160
Buspirone	2.5	45	i.p.	Rat	Striatum	195	160
	10	45	i.p.	Rat	Striatum	201	160
Molindone	0.5	45	i.p.	Rat	Striatum	175	160
	2.5	45	i.p.	Rat	Striatum	210	160
Clozapine	10	45	i.p.	Rat	Striatum	164	160
	20	45	i.p.	Rat	Striatum	220	160
SCH 23390	0.25	60	i.p.	Rat	Striatum	100	160
	2.5	60	i.p.	Rat	Striatum	120	160
Rimcazole	20 40	45 45	i.p.	Rat Rat	Striatum Striatum	100 150	160 160
* W.B., whole brain.			i.p.				

PHARMACOLOGICAL REVIEWS

40 45 i.p.

*W.B., whole brain.

DOPAC in these paradigms cannot be simply explained

by a decrease in autoreceptor feedback on dopaminergic

nerve endings as a result of decreased DA release. This * W.B., whole brain.
DOPAC in these paradigms cannot be simply explained leby a decrease in autoreceptor feedback on dopaminergic in
nerve endings as a result of decreased DA release. This F
has been clearly demonstrated b has been clearly demonstrated by a decrease in autoreceptor feedback on dopaminergic
has been clearly demonstrated by dose-response studies
of 1-hydroxy-3-amino-pyrrolidone-2 (HA-966) which de-DOPAC in these paradigms cannot be simply explained
by a decrease in autoreceptor feedback on dopaminergic
nerve endings as a result of decreased DA release. This
has been clearly demonstrated by dose-response studies
of 1 by a decrease in autoreceptor feedback on dopaminergic in nerve endings as a result of decreased DA release. This Phas been clearly demonstrated by dose-response studies dof 1-hydroxy-3-amino-pyrrolidone-2 (HA-966) which d nerve endings as a result of decreased DA release. This PAC has been clearly demonstrated by dose-response studies decrease of 1-hydroxy-3-amino-pyrrolidone-2 (HA-966) which decreases nigrostriatal cell firing and DA relea

Rat Striatum 150 160
levels) can be decreased to 40% of control with no change
in DOPAC levels. However, with increasing doses, DO-
PAC levels are increased, in the absence of any further levels) can be decreased to 40% of control with no change
in DOPAC levels. However, with increasing doses, DO-
PAC levels are increased, in the absence of any further
decreases in 3-MT levels. These data argue against a levels) can be decreased to 40% of control with no change
in DOPAC levels. However, with increasing doses, DO-
PAC levels are increased, in the absence of any further
decreases in 3-MT levels. These data argue against a
ch levels) can be decreased to 40% of control with no change
in DOPAC levels. However, with increasing doses, DO-
PAC levels are increased, in the absence of any further
decreases in 3-MT levels. These data argue against a
ch in DOPAC levels. However, with increasing doses, DO-
PAC levels are increased, in the absence of any further
decreases in 3-MT levels. These data argue against a
change in autoreceptor activity as the cause of the dra-
mat PAC levels are increased, in the absence of any further decreases in 3-MT levels. These data argue against a change in autoreceptor activity as the cause of the dramatic increases in DOPAC after interruption of neuronal fi

aspet

were unanesthetized. The stimulation consisted of square wave pulses $(1.5 \text{ ms}, 200 \mu\text{A})$ with alternating 20-s "on" and "off" periods for 20 min (219) .

(1.5 ms, 200 μ A) with alternating 20-s "on" and "off" periods for 20
min (219).
4. *Brain lesions.* a. PARTIAL OR COMPLETE DESTRUC-
TION OF DA NEURONS. Degeneration of about 80% of the
primate mesotelencephalic dopamin min (219).
4. Brain lesions. a. PARTIAL OR COMPLETE DESTRUC
TION OF DA NEURONS. Degeneration of about 80% of the
primate mesotelencephalic dopamine projection is asso-
ciated with the akinesia, rigidity, and tremor of Park 4. Brain lesions. a. PARTIAL OR COMPLETE DESTRITION OF DA NEURONS. Degeneration of about 80% of primate mesotelencephalic dopamine projection is as ciated with the akinesia, rigidity, and tremor of Parkson's disease (25, 8 4. Brain lesions. a. PARTIAL OR COMPLETE DESTR
TION OF DA NEURONS. Degeneration of about 80% of
primate mesotelencephalic dopamine projection is a
ciated with the akinesia, rigidity, and tremor of Parl
son's disease (25, 8 TION OF DA NEURONS. Degeneration of about 80% of the primate mesotelencephalic dopamine projection is associated with the akinesia, rigidity, and tremor of Parkinson's disease $(25, 87, 154)$. A similar degree of nigrostr primate mesotelencephalic dopamine projection is asso-
ciated with the akinesia, rigidity, and tremor of Parkin-
son's disease (25, 87, 154). A similar degree of nigrostri-
atal degeneration is required for the appearance ciated with the akinesia, rigidity, and tremor of Parkinson's disease (25, 87, 154). A similar degree of nigrostri-
atal degeneration is required for the appearance of be-
havioral impairments in rodents (124, 151, 162),
s son's disease (25, 87, 154). A similar degree of nigrostri
atal degeneration is required for the appearance of be
havioral impairments in rodents (124, 151, 162)
suggesting that as few as 20% of striatal dopamine neu
rons atal degeneration is required for the appearance of
havioral impairments in rodents (124, 151, 16
suggesting that as few as 20% of striatal dopamine n
rons can sustain a variety of sensorimotor capabilit
However, character havioral impairments in rodents (124, 151, 162),
suggesting that as few as 20% of striatal dopamine neurons can sustain a variety of sensorimotor capabilities.
However, characterization of the biochemical compensations of suggesting that as few as 20% of striatal dopamine neu-
rons can sustain a variety of sensorimotor capabilities.
However, characterization of the biochemical compen-
sations of these surviving neurons has not resolved
whet rons can sustain a variety of sensorimotor capabilities.
However, characterization of the biochemical compensations of these surviving neurons has not resolved
whether they maintain dopamine release at normal levels
or, as However, characterization of the biochemical compensations of these surviving neurons has not resolve whether they maintain dopamine release at normal level or, as proposed by Mortimer and Webster (131), that les than norm sations of these surviving neurons has not resolved
whether they maintain dopamine release at normal levels
or, as proposed by Mortimer and Webster (131), that less
than normal amounts of dopamine release may be suffi-
cie whether they maintain dopamine release at normal levels
or, as proposed by Mortimer and Webster (131), that less
than normal amounts of dopamine release may be suffi-
cient for normal behavioral function. Six-fold increase or, as proposed by Mortimer and Webster (131), that less
than normal amounts of dopamine release may be suffi-
cient for normal behavioral function. Six-fold increases
in striatal dopamine release have been measured, eithe than normal amounts of dopamine release may be sufficient for normal behavioral function. Six-fold increases
in striatal dopamine release have been measured, either
by the in vitro efflux of dopamine (169) or in vivo $3\text$ cient for normal behavioral function. Six-fold increases
in striatal dopamine release have been measured, either
by the in vitro efflux of dopamine (169) or in vivo 3-MT
levels (12) relative to the dopamine content of ter in striatal dopamine release have been measured, either
by the in vitro efflux of dopamine (169) or in vivo 3-MT
levels (12) relative to the dopamine content of terminals
surviving extensive $(\geq 80\%)$ denervations. Stria by the in vitro efflux of dopamine (169) or in vivo 3-MT levels (12) relative to the dopamine content of terminals surviving extensive $(\geq 80\%)$ denervations. Striatal do-
pamine innervation can be estimated by dopam levels (12) relative to the dopamine content of terminals
surviving extensive $(\geq 80\%)$ denervations. Striatal do-
pamine innervation can be estimated by dopamine levels,
since they covary with the amount of high-affinit surviving extensive $(\geq 80\%)$ denervations. Striatal do
pamine innervation can be estimated by dopamine levels
since they covary with the amount of high-affinity do
pamine uptake $(12, 125, 230)$ and tyrosine hydroxylas
 pamine innervation can be estimated by dopamine levels,
since they covary with the amount of high-affinity do-
pamine uptake (12, 125, 230) and tyrosine hydroxylase a
(80) over the entire range of dopamine denervation.
Th since they covary with the amount of high-affinity do-
pamine uptake (12, 125, 230) and tyrosine hydroxylase and (80) over the entire range of dopamine denervation.
Thus, the change in dopamine metabolism or release per pamine uptake (12, 125, 230) and tyrosine hydroxylase (80) over the entire range of dopamine denervation.
Thus, the change in dopamine metabolism or release per dopamine nerve terminal can be estimated according to for th

LEASE IN VIVO FROM NEURONS
creases in dopamine release from surviving nerve term
nals far exceed increases in neuronal dopamine metab 3 AND DA RELEASE IN VIVO FROM NEURONS 171

creases in dopamine release from surviving nerve termi-

3-MT nals far exceed increases in neuronal dopamine metabo-

lism assessed with DOPAC (2-fold) or HVA (3-fold)

increases creases in dopamine release from survey
nals far exceed increases in neuronal dism assessed with DOPAC (2-fold)
increases relative to dopamine (12).
We have also measured the 6-hyd eases in dopamine release from surviving nerve termi-
ls far exceed increases in neuronal dopamine metabo-
m assessed with DOPAC (2-fold) or HVA (3-fold)
creases relative to dopamine (12).
We have also measured the 6-hydro

nals far exceed increases in neuronal dopamine metabolism assessed with DOPAC (2-fold) or HVA (3-fold) increases relative to dopamine (12).
We have also measured the 6-hydroxydopamine (6-OHDA)-induced depletion of rat stri lism assessed with DOPAC (2-fold) or HVA (3-fold)
increases relative to dopamine (12).
We have also measured the 6-hydroxydopamine (6-
OHDA)-induced depletion of rat striatal 3-MT, DOPAC,
HVA, and dopamine to determine the increases relative to dopamine (12).

We have also measured the 6-hydroxydopamine (6-

OHDA)-induced depletion of rat striatal 3-MT, DOPAC,

HVA, and dopamine to determine the extent of changes

in dopamine release and met We have also measured the 6-hydroxydopamine (6-
OHDA)-induced depletion of rat striatal 3-MT, DOPAC,
HVA, and dopamine to determine the extent of changes
in dopamine release and metabolism following less severe
dopamine de OHDA)-induced depletion of rat striatal 3-MT, DOPAC,
HVA, and dopamine to determine the extent of changes
in dopamine release and metabolism following less severe
dopamine denervations (11). Unlike DOPAC and HVA,
which dec HVA, and dopamine to determine the extent of changes
in dopamine release and metabolism following less severe
dopamine denervations (11). Unlike DOPAC and HVA,
which decrease almost in proportion to the dopamine
decreases in dopamine release and metabolism following less severe
dopamine denervations (11). Unlike DOPAC and HVA,
which decrease almost in proportion to the dopamine
decreases when dopamine losses are from 30 to 80%, 3-
MT conce

FIG. 6. Extent of striatal dopamine metabolism (*DOPAC*, HVA) and release $(3-MT)$ as a function of dopamine denervation (*Dopamine*).
*, $P < 0.05$; **, $P < 0.01$ versus 3-MT depletion, Student's t test. $n = 3$ to 8 per g **dopamine concentrations of** 60% **or less;** 3-MT losses are significant **for** residual dopamine concentrations of 20% or less *(P* **< 0.05,** Stu- **dent's** *^t* test) (11).

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

equal extent. Importantly, 3-MT, as well as DOPAC and (20
HVA, is unmeasureable when dopamine losses are vir- DA WOOD A
equal extent. Importantly, 3-MT, as well as DOPAC and
HVA, is unmeasureable when dopamine losses are vir-
tually complete (98 to 99%). 172
equal extent. Importantly, 3-N
HVA, is unmeasureable wher
tually complete (98 to 99%).
The lack of changes in 3 ual extent. Importantly, 3-MT, as well as DOPAC and (200) of
VA, is unmeasureable when dopamine losses are vir- DA releally complete (98 to 99%).

c. LES

The lack of changes in 3-MT over the 0 to 80% acid lesi

nervation

equal extent. Importantly, 3-MT, as well as DOPAC and (2
HVA, is unmeasureable when dopamine losses are vir-
tually complete (98 to 99%).
The lack of changes in 3-MT over the 0 to 80% adenervation range is virtually identi HVA, is unmeasureable when dopamine losses are vir-
tually complete (98 to 99%).
The lack of changes in 3-MT over the 0 to 80% accements by brain dialysis of alt
dopamine release measurements by brain dialysis of the the
 tually complete (98 to 99%). C.
The lack of changes in 3-MT over the 0 to 80% acid
denervation range is virtually identical to the results of alter
dopamine release measurements by brain dialysis of the thes
denervated str The lack of changes in 3-MT over the 0 to 80% denervation range is virtually identical to the results dopamine release measurements by brain dialysis of the denervated striatum (156a). The preservation of 3-M levels in ne denervation range is virtually identical to the results of alternation indicates the denervated striatum (156a). The preservation of 3-MT A devels in neostriata depleted by up to 80% of the dopamine innervation indicates dopamine release measurements by brain dialysis of the the denervated striatum (156a). The preservation of 3-MT Alevels in neostriata depleted by up to 80% of the dopamine innervation indicates that dopamine release can b denervated striatum (156a). The preservation of 3-MT A levels in neostriata depleted by up to 80% of the dopa-
mine innervation indicates that dopamine release can be efficient maintained at near-normal levels by as few a levels in neostriata depleted by up to 80% of the dopa-
mine innervation indicates that dopamine release can be
effection maintained at near-normal levels by as few as 20% of back
the normal dopamine input. Thus, as shown mine innervation indicates that dopamine release can be
maintained at near-normal levels by as few as 20% of
the normal dopamine input. Thus, as shown in vitro
(169) and in vivo with microdialysis (156a) or 3-MT
(refs. 11 maintained at near-normal levels by as few as 20% of back pathways can be assessed on striatal DA release.
the normal dopamine input. Thus, as shown in vitro
(169) and in vivo with microdialysis (156a) or 3-MT
(refs. 1 (169) and in vivo with microdialysis $(156a)$ or $3-MT$ of dopamine nerve terminals can maintain dopamine

(refs. 11 and 12; fig. 6), far fewer than the normal number
of dopamine nerve terminals can maintain dopamine
release and thus normal behaviors.
b. LESIONS OF THE STRIATONIGRAL FEEDBACK PATH-
wAYS. Lesions of the crus cere of dopamine nerve terminals can maintain dopamine
release and thus normal behaviors.
b. LESIONS OF THE STRIATONIGRAL FEEDBACK PATH-
WAYS. Lesions of the crus cerebri, which sever most or
all of the striatal feedback pathwa release and thus normal behaviors.

b. LESIONS OF THE STRIATONIGRAL FEEDBACK PATH-

wAYS. Lesions of the crus cerebri, which sever most or

all of the striatal feedback pathway to the substantia

migra, result in a 56% inc b. LESIONS OF THE STRIATONIGRAL FEEDBACK PATH-WAYS. Lesions of the crus cerebri, which sever most or all of the striatal feedback pathway to the substantia nigra, result in a 56% increase in striatal 3-MT levels 12 days af WAYS. Lesions of the crus cerebri, which sever most or
all of the striatal feedback pathway to the substantia ^U
nigra, result in a 56% increase in striatal 3-MT levels 12
 $\frac{1}{2}$
days after the lesion in rats (44). Th all of the striatal feedback pathway to the substantinigra, result in a 56% increase in striatal 3-MT levels 1
days after the lesion in rats (44). These augmentation
in DA release presumably reflect the loss of the inhibit migra, result in a 56% increase in striatal 3-MT levels 12 mcrease
days after the lesion in rats (44) . These augmentations
in DA release presumably reflect the loss of the inhibitory Since de
GABAergic feedback loop to days after the lesion in rats (44). These augmentations related decreases of 3-MT in the human basal ganglia.

in DA release presumably reflect the loss of the inhibitory

GABAergic feedback loop to the substantia nigra d in DA release presumably reflect the loss of the inhibitory

GABAergic feedback loop to the substantia nigra dopa-

mine cell bodies. Indeed, this lesion results in a 69%

decrease in the gamma-amino butyric acid (GABA) l GABAergic feedback loop to the substantia nigra dopa-
mine cell bodies. Indeed, this lesion results in a 69% m
decrease in the gamma-amino butyric acid (GABA) levels
of the ipsilateral substantia nigra, supporting the les mine cell bodies. Indeed, this lesion results in a 69% modernease in the gamma-amino butyric acid (GABA) levels reg of the ipsilateral substantia nigra, supporting the lesion age of striatal GABAergic inputs to the nigra. decrease in the gamma-amino butyric acid (GABA) levels
of the ipsilateral substantia nigra, supporting the lesion
of striatal GABAergic inputs to the nigra. In the case of
i.p. in
an acute hemitransection where the nigros % of the ipsilateral substantia nigra, supporting the lesion of striatal GABAergic inputs to the nigra. In the case of an acute hemitransection where the nigrostriatal tract is also severed, there is a 60% decrease in of striatal GABAergic inputs to the nigra. In the case of $\frac{1}{2}$ an acute hemitransection where the nigrostriatal tract is also severed, there is a 60% decrease in striatal 3-MT levels in the rat (205, 224). This lower an acute hemitransection where the nigrostriatal tract is
also severed, there is a 60% decrease in striatal 3-MT
levels in the rat (205, 224). This lower 3-MT baseline at
2 to 3 h post lesion represents a new steady state also severed, there is a 60% decrease in striatal 3-MT levels in the rat (205, 224). This lower 3-MT baseline at 2 to 3 h post lesion represents a new steady state of increased DA synthesis and decreased DA release (205, 2 levels in the rat $(205, 224)$. This lower 3-MT baseline at 2 to 3 h post lesion represents a new steady state of increased DA synthesis and decreased DA release $(205, 224)$ in the isolated nerve endings, which nonethele increased DA synthesis and decreased DA release (205, 224) in the isolated nerve endings, which nonetheless can be pharmacologically modified with amphetamine (34), opiates (224), and GABAergics (205). In analogy to the ph

224) in the isolated nerve endings, which nonetheless can be pharmacologically modified with amphetamine (34) , opiates (224), and GABAergics (205). In analogy to the physical lesion induced by acute is the hemitransecti can be pharmacologically modified with ampheta (34), opiates (224), and GABAergics (205).
In analogy to the physical lesion induced by a
hemitransection, a decrease in impulse conduction of
striatonigral tract can also be (34), opiates (224), and GABAergics (205).
In analogy to the physical lesion induced by acute
hemitransection, a decrease in impulse conduction of the
striatonigral tract can also be established pharmacolog-
ically with G In analogy to the physical lesion induced by acuted hemitransection, a decrease in impulse conduction of the striatonigral tract can also be established pharmacologically with GBL (71, 90, 101, 184, 209) and HA-966 (3132, hemitransection, a decrease in impulse conduction of the striatonigral tract can also be established pharmacologically with GBL (71, 90, 101, 184, 209) and HA-966 (36, doping 132, 184, 219). In dose-response studies of HA striatonigral tract can also be established pharmacolog-
ically with GBL $(71, 90, 101, 184, 209)$ and HA-966 $(36, 132, 184, 219)$. In dose-response studies of HA-966, clear-
cut decrements in DA release can be monitored ically with GBL $(71, 90, 101, 184, 209)$ and HA-966 $(36, 132, 184, 219)$. In dose-response studies of HA-966, clear-
cut decrements in DA release can be monitored by in
vivo voltammetry (132) , by decreases in basal 3 132, 184, 219). In dose-response studies of HA-966, clear-
cut decrements in DA release can be monitored by in
vivo voltammetry (132), by decreases in basal 3-MT
levels (219), and by decreases in pargyline-dependent 3-
MT cut decrements in DA release can be monitored by in
vivo voltammetry (132), by decreases in basal 3-MT
levels (219), and by decreases in pargyline-dependent 3-
MT accumulation (132). Similarly, GBL also decreases
the DA co vivo voltammetry (132), by decreases in basal 3-levels (219), and by decreases in pargyline-dependent MT accumulation (132). Similarly, GBL also decreathe DA collected in striatal dialysates (90), striatedy-state 3-MT leve levels (219), and by decreases in pargyline-dependent 3-MT accumulation (132). Similarly, GBL also decreases
the DA collected in striatal dialysates (90), striatal
steady-state 3-MT levels (209), and pargyline-dependent
3-MT accumulation (132). Similarly, GBL also decreases
the DA collected in striatal dialysates (90), striatal
steady-state 3-MT levels (209), and pargyline-dependent
3-MT accumulation in rat striatum (101). These de-
creases the DA collected in striatal dialysates (90), striatal
steady-state 3-MT levels (209), and pargyline-dependent
3-MT accumulation in rat striatum (101). These de-
creases in DA release precede any compensatory in-
creases i steady-state 3-MT levels (209), and pargyline-depender
3-MT accumulation in rat striatum (101). These decreases in DA release precede any compensatory ir
creases in DA synthesis and metabolism (209). Anothe
example of phar 3-MT accumulation in rat striatum (101). These de-
creases in DA release precede any compensatory in-
creases in DA synthesis and metabolism (209). Another Keh
example of pharmacological axotomy is with local injec-
of I
 creases in DA release precede any compensatory increases in DA synthesis and metabolism (209). Another example of pharmacological axotomy is with local injections of tetrodotoxin (TTX) into the striatum (223). In this case creases in DA synthesis and metabolism (209). Another Ke
example of pharmacological axotomy is with local injec-
tions of tetrodotoxin (TTX) into the striatum (223). In D(
this case, nigrostriatal as well as all potential example of pharmacological axotomy is with local injections of tetrodotoxin (TTX) into the striatum (223). In
this case, nigrostriatal as well as all potential presynaptic
afferent inputs are inhibited. Under these condit tions of tetrodotoxin (TTX) into the striatum (223). In DOPA
this case, nigrostriatal as well as all potential presynaptic as indi
afferent inputs are inhibited. Under these conditions, the shown
only DA metabolite change this case, nigrostriatal as well as all potential presynaptic as independent inputs are inhibited. Under these conditions, the shown only DA metabolite changes noted are profound (-90%) 6) as the decreases in striatal 3afferent inputs are inhibited. Under these conditions, the shown to be inaccurate in many cases (reviewed in table
only DA metabolite changes noted are profound $(\sim 90\%)$ 6) as to preclude the use of these parameters for

) ALTAR
(200) of the striatum have also demonstrated decreased
DA release after local TXX application. ALTAR
(200) of the striatum have also demonstrated decreased
DA release after local TXX application.
c. LESIONS OF INTRINSIC STRIATAL NEURONS. Kainic
acid lesions of the striatum have been reported to not

(200) of the striatum have also demonstrated decreased
DA release after local TXX application.
c. LESIONS OF INTRINSIC STRIATAL NEURONS. Kainic
acid lesions of the striatum have been reported to not
alter striatal 3-MT lev (200) of the striatum have also demonstrated decreased DA release after local TXX application.

c. LESIONS OF INTRINSIC STRIATAL NEURONS. Kainic

acid lesions of the striatum have been reported to not

alter striatal 3-MT DA release after local TXX application.

c. LESIONS OF INTRINSIC STRIATAL NEURONS. Kainic

acid lesions of the striatum have been reported to not

alter striatal 3-MT levels at 3 days (224) but increase

these levels to 20 c. LESIONS OF INTRINSIC STRIATAL NEURONS. Kainic
acid lesions of the striatum have been reported to not
alter striatal 3-MT levels at 3 days (224) but increase
these levels to 200% of control at 6 days post lesion (44).
A acid lesions of the striatum have been reported to not
alter striatal 3-MT levels at 3 days (224) but increase
these levels to 200% of control at 6 days post lesion (44).
A comprehensive time course of this phenomenon re-
 alter striatal 3-MT levels at 3 days (224) but increase
these levels to 200% of control at 6 days post lesion (44)
A comprehensive time course of this phenomenon re
mains to be defined in one experiment such that the
effec A comprehensive time course of this phenomenon remains to be defined in one experiment such that the effects of acute and chronic lesions of striatonigral feed-*C. Compressmess*
 C. Effects of acute and chrights of Aging
 C. Effects of Aging

Dopamine, but not 3-

 224 in the isolated nerve endings, which nonetheless
can be pharmacologically modified with amphetamine
(34), opiates (224), and GABAergics (205).
Thus, caudate-putamen 3-MT and the turnover of do-
pamine through its re fects of acute and chronic lesions of striatonigral feed-
ck pathways can be assessed on striatal DA release.
Effects of Aging
Dopamine, but not 3-MT, is decreased with age in the
sal ganglia of normal humans (43). However back pathways can be assessed on striatal DA release.

C. Effects of Aging

Dopamine, but not 3-MT, is decreased with age in th

basal ganglia of normal humans (43). However, as men-

tioned above, 3-MT levels increase dra C. Effects of Aging
Dopamine, but not 3-MT, is decreased with age in the
basal ganglia of normal humans (43). However, as men-
tioned above, 3-MT levels increase dramatically after
death in human caudate-putamen (168) and C. *Effects of Aging*
Dopamine, but not 3-MT, is decreased with age in the
basal ganglia of normal humans (43). However, as men-
tioned above, 3-MT levels increase dramatically after
death in human caudate-putamen (168) a Dopamine, but not 3-MT, is decreased with age in the
basal ganglia of normal humans (43). However, as men-
tioned above, 3-MT levels increase dramatically after
death in human caudate-putamen (168) and in rodents
(190), wh basal ganglia of normal humans (43). However, as mentioned above, 3-MT levels increase dramatically after
death in human caudate-putamen (168) and in rodents
(190), when microwave irradiation is not used (102) or
used imp tioned above, 3-MT levels increase dramatically after
death in human caudate-putamen (168) and in rodents
(190), when microwave irradiation is not used (102) or
used improperly (190) (section II A). The postmortem
increase death in human caudate-putamen (168) and in rodents (190), when microwave irradiation is not used (102) or used improperly (190) (section II A). The postmortem increase in dopamine release could therefore mask age-related (190), when microwave irradiation is not used (102) used improperly (190) (section II A). The postmort increase in dopamine release could therefore mask a related decreases of $3\text{-}MT$ in the human basal gang Since dopami used improperly (190) (section II A). The postmortem
increase in dopamine release could therefore mask age-
related decreases of 3-MT in the human basal ganglia.
Since dopamine levels are also lower in the caudate-
putamen increase in dopamine release could therefore mask age-
related decreases of 3-MT in the human basal ganglia.
Since dopamine levels are also lower in the caudate-
putamen of aged rats (13, 125; see ref. 65 for review), we
m related decreases of 3-MT in the human basal ganglia.
Since dopamine levels are also lower in the caudate-
putamen of aged rats (13, 125; see ref. 65 for review), we
measured dopamine, DOPAC, HVA, and 3-MT in this
region a Since dopamine levels are also lower in the caudate-
putamen of aged rats (13, 125; see ref. 65 for review), we
measured dopamine, DOPAC, HVA, and 3-MT in this
region and in the olfactory tubercle in aged (28 mo of
age) or putamen of aged rats (13, 125; see ref. 65 for review), we
measured dopamine, DOPAC, HVA, and 3-MT in this
region and in the olfactory tubercle in aged (28 mo of
age) or young (4 mo of age) Fischer 344 rats that received
i measured dopamine, DOPAC, HVA, and 3-MT in this
region and in the olfactory tubercle in aged (28 mo of
age) or young (4 mo of age) Fischer 344 rats that received
i.p. injections of vehicle or pargyline 10 min before sac-
r region and in the olfactory tubercle in aged (28 mo of age) or young (4 mo of age) Fischer 344 rats that received i.p. injections of vehicle or pargyline 10 min before sacrifice by microwave irradiation. Concentrations of age) or young (4 mo of age) Fischer 344 rats that received
i.p. injections of vehicle or pargyline 10 min before sac-
rifice by microwave irradiation. Concentrations of do-
pamine, but neither 3-MT, DOPAC, nor HVA, were
de rifice by microwave irradiation. Concentrations of do-
pamine, but neither 3-MT, DOPAC, nor HVA, were
decreased in the caudate-putamen (table 6). In contrast,
each metabolite was lower in the olfactory tubercle of rifice by microwave irradiation. Concentrations of do-
pamine, but neither 3-MT, DOPAC, nor HVA, were
decreased in the caudate-putamen (table 6). In contrast,
each metabolite was lower in the olfactory tubercle of
the aged pamine, but neither 3-MT, DOPAC, nor HVA, w
decreased in the caudate-putamen (table 6). In contra
each metabolite was lower in the olfactory tubercle
the aged rats, but the accumulation of 3-MT after p
gyline was not, nor decreased in the caudate-putamen (table 6). In contrast, each metabolite was lower in the olfactory tubercle of the aged rats, but the accumulation of 3-MT after pargyline was not, nor was it lower in the caudate-putamen. each metabolite was lower in the olfactory tubercle of
the aged rats, but the accumulation of 3-MT after par-
gyline was not, nor was it lower in the caudate-putamen.
Thus, caudate-putamen 3-MT and the turnover of do-
pami the aged rats, but the accumulation of 3-MT after par-
gyline was not, nor was it lower in the caudate-putamen.
Thus, caudate-putamen 3-MT and the turnover of do-
pamine through its releasable pool in either region are
not gyline was not, nor was it lower in the caudate-putamen.
Thus, caudate-putamen 3-MT and the turnover of do-
pamine through its releasable pool in either region are
not lower in the aged rat. Possible reasons for the per-
s Thus, caudate-putamen 3-MT and the turnover of do-
pamine through its releasable pool in either region are
not lower in the aged rat. Possible reasons for the per-
sistence of 3-MT in brain regions with partial dopamine
de pamine through its releasable pool in either reginated to lower in the aged rat. Possible reasons for the usistence of 3-MT in brain regions with partial dopenervations have been made based on the unidopamine lesion model *D. Interpretation* of DA Metabolic Changes
D. Interpretation of DA Metabolite Changes
In general, the use of DA metabolites to int denervations have been made based on the unilateral
dopamine lesion model (11) (see section IV D).
D. Interpretation of DA Metabolite Changes
In general, the use of DA metabolites to interpret the

status of neuronal activity in dopaminergic pathways has D. Interpretation of DA Metabolite Changes

In general, the use of DA metabolites to interpret the

status of neuronal activity in dopaminergic pathways has

been made inappropriately in the literature (reviewed in

refs. D. Interpretation of DA Metabolite Changes
In general, the use of DA metabolites to interpret the
status of neuronal activity in dopaminergic pathways has
been made inappropriately in the literature (reviewed in
refs. 50, In general, the use of DA metabolites to interpret the
status of neuronal activity in dopaminergic pathways has
been made inappropriately in the literature (reviewed in
refs. 50, 54, 108, 157, and 199) despite the early st status of neuronal activity in dopaminergic pathways has
been made inappropriately in the literature (reviewed in
refs. 50, 54, 108, 157, and 199) despite the early studies
of Sharman and co-workers, which clearly showed t been made inappropriately in the literature (reviewed
refs. 50, 54, 108, 157, and 199) despite the early stud
of Sharman and co-workers, which clearly showed th
DOPAC is the major intraneuronal (i.e., DA nerve er
ing) DA m refs. 50, 54, 108, 157, and 199) despite the early studies
of Sharman and co-workers, which clearly showed that
DOPAC is the major intraneuronal (i.e., DA nerve end-
ing) DA metabolite with HVA being a secondary metab-
oli of Sharman and co-workers, which clearly showed that DOPAC is the major intraneuronal (i.e., DA nerve ending) DA metabolite with HVA being a secondary metabolite of this DOPAC pool (157). Similarly, the studies of Kehr (10 DOPAC is the major intraneuronal (i.e., DA nerve end-
ing) DA metabolite with HVA being a secondary metab-
olite of this DOPAC pool (157). Similarly, the studies of
Kehr (101, 102) showed that 3-MT is an accurate index
of ing) DA metabolite with HVA being a secondary metab-
olite of this DOPAC pool (157). Similarly, the studies of
Kehr (101, 102) showed that 3-MT is an accurate index
of DA release. Despite these landmark studies, HVA,
DOPAC olite of this DOPAC pool (157). Similarly, the studies of Kehr (101, 102) showed that 3-MT is an accurate index of DA release. Despite these landmark studies, HVA, DOPAC, or DOPAC/DA ratios are still often referred to as i Kehr (101, 102) showed that 3-MT is an accurate index
of DA release. Despite these landmark studies, HVA,
DOPAC, or DOPAC/DA ratios are still often referred to
as indices of DA release. This interpretation has been
shown t of DA release. Despite these landmark studies, HVA,
DOPAC, or DOPAC/DA ratios are still often referred to
as indices of DA release. This interpretation has been
shown to be inaccurate in many cases (reviewed in table
6) as DOPAC, or DOPAC/DA ratios are
as indices of DA release. This int
shown to be inaccurate in many ca
6) as to preclude the use of these per-
inferences concerning DA release.
Therefore, at this point we will de indices of DA release. This interpretation has been
own to be inaccurate in many cases (reviewed in table
as to preclude the use of these parameters for making
ferences concerning DA release.
Therefore, at this point we wi shown to be inaccurate in many cases (reviewed in table 6) as to preclude the use of these parameters for making inferences concerning DA release.
Therefore, at this point we will define the assumptions upon which the util

aspet

aspet

**A RELEASE IN
TABLE 6
roung and aged rats** 3-MT MEASUREMENTS AND DA RELEASE IN VIVO FROM NEURONS
TABLE 6
Fischer 344 rats were given injections of either the saline vehicle of young and aged rats $(n = 9/$ group). Young (4-mo-old) or aged (29-mo-old) male
Fischer 344 TABLE 6
*i*amine and metabolites in the striatum and olfactory tubercle of young and aged rats (n = 9/group). Young (4-mo-old) or aged (29-mo-old) n
Fischer 344 rats were given injections of either the saline vehicle (1 ml

a Mean ± SEM. ^t *^P* **<** 0.05.

II Pargyline singificantly *(P* **< 0.05)** and **consistently altered** 3-MT values compared to those of vehicle-treated, age-matched cohorts.

 $\uparrow P < 0.05$.
 \uparrow Numbers in parentheses, percentage.
 $\S P < 0.01$ versus young animals.
 Pargyline singificantly $(P < 0.05)$ and consistently altered 3-MT values

release is based, and then attempt to validate these a $\frac{2}{3}P < 0.01$ versus young animals.

Pargyline singificantly $(P < 0.05)$ and consistently altered 3-M

release is based, and then attempt to validate the

assumptions with studies of the pharmacological mod

lation of D Pargyline singificantly $(P < 0.05)$ and consistently altere
release is based, and then attempt to validate
assumptions with studies of the pharmacological
lation of DA synthesis, metabolism, and release.
In the presence of lease is based, and then attempt to validate the sumptions with studies of the pharmacological motion of DA synthesis, metabolism, and release.
In the presence of *unaltered, steady-state concentra-* of *DA*, the following release is based, and then attempt to validate
assumptions with studies of the pharmacological is
lation of DA synthesis, metabolism, and release.
In the presence of *unaltered, steady-state concertions of DA*, the followi

sumptions with studies of the pharmacological modurion of DA synthesis, metabolism, and release.
In the presence of *unaltered, steady-state concentras of DA*, the following assumptions are made.
(a) Changes in DOPAC level lation of DA synthesis, metabolism, and release.
In the presence of *unaltered, steady-state concentra-*
tions of DA, the following assumptions are made.
(a) Changes in DOPAC levels are an index of intra-
neuronal DA synth In the presence of *unaltered, steady-state concentra*-late
tions of DA, the following assumptions are made.
(a) Changes in DOPAC levels are an index of intra-
neuronal DA synthesis/metabolism in the cytoplasmic mea-
pool. tions of DA, the following assumptions are made.
(a) Changes in DOPAC levels are an index of int
neuronal DA synthesis/metabolism in the cytoplasi
pool. For example, if DA levels are unchanged afte
drug but DOPAC levels ar (a) Changes in DOPAC levels are an index of intra-
neuronal DA synthesis/metabolism in the cytoplasmic
pool. For example, if DA levels are unchanged after a
lism is increased in the DA nerve ending in conjuntion
with enha neuronal DA synthesis/metabolism in the cytoplasmingool. For example, if DA levels are unchanged after drug but DOPAC levels are increased, then DA metabolism is increased in the DA nerve ending in conjuntio with enhanced pool. For example, if DA levels are unchanged after a planty of the DA steady state increased, then DA metabomethism is increased in the DA nerve ending in conjuntion of with enhanced DA synthesis which maintains the unaldrug but DOPAC levels are increased, then DA metal
lism is increased in the DA nerve ending in conjunti
with enhanced DA synthesis which maintains the un
tered DA steady-state. This situation exemplifies thomeostatic mecha lism is increased in the DA nerve ending in conjun
with enhanced DA synthesis which maintains the u
tered DA steady state. This situation exemplifies
homeostatic mechanisms which maintain the ste
state concentrations of DA *tel* manipulations. red DA steady state. This situation exemplifies the *m* meostatic mechanisms which maintain the steady-
metroconcentrations of DA after a variety of experimen-
in manipulations.
(b) Changes in HVA are secondary to the effl

homeostatic mechanisms which maintain the steady-
state concentrations of DA after a variety of experimen-
tal manipulations.
(b) Changes in HVA are secondary to the efflux of of
DOPAC from the nerve ending and/or changes efflux of experimentations of DA after a variety of experimental manipulations.

(b) Changes in HVA are secondary to the efflux of of

DOPAC from the nerve ending and/or changes in the lefflux of this metabolite from the b tal manipulations.

(b) Changes in HVA are secondary to the efflux

DOPAC from the nerve ending and/or changes in

efflux of this metabolite from the brain. Changes in

MT concentrations have never been shown to signicantl (b) Changes in HVA are secondary to the efflux Ω DOPAC from the nerve ending and/or changes in the efflux of this metabolite from the brain. Changes in Ω MT concentrations have never been shown to significantly alte DOPAC from the nerve ending and/or changes in the
efflux of this metabolite from the brain. Changes in 3-
MT concentrations have never been shown to signifi-
cantly alter HVA concentrations, except following injec-
tions o Filim of this metabolite from the brain. Changes in 3-
 T concentrations have never been shown to signifi-

antly alter HVA concentrations, except following injec-

ms of the COMT inhibitor, tropolone (section IV A).

(c MT concentrations have never been shown to significantly alter HVA concentrations, except following injections of the COMT inhibitor, tropolone (section IV A). co (c) Changes in 3-MT levels are indicative of DA release T a

cantly alter HVA concent
tions of the COMT inhibi
(c) Changes in 3-MT lev
and its subsequent methyl
surrounding the synapse.
This working model is p

(c) Changes in 3-MT levels are indicative of DA release
and its subsequent methylation in the cleft and glial cells
surrounding the synapse.
This working model is presented in fig. 2. A key feature
of this conceptual fram and its subsequent methylation in the cleft and glial cells
surrounding the synapse.
This working model is presented in fig. 2. A key feature
of this conceptual framework is that DA, DOPAC, HVA,
and 3-MT must be measured i surrounding the synapse. all
This working model is presented in fig. 2. A key feature
of this conceptual framework is that DA, DOPAC, HVA,
and 3-MT must be measured in order to fully evaluate
the functional status of dopam This working model is presented in fig. 2. A key feature
of this conceptual framework is that DA, DOPAC, HVA,
and 3-MT must be measured in order to fully evaluate
the functional status of dopaminergic neurons. This is
best of this conceptual framework is that DA, DOPAC
and 3-MT must be measured in order to fully e
the functional status of dopaminergic neurons.
best realized by table 7, in which a number of ex
present a clear-cut *uncoupling* and 3-MT must be measured in order to fully evaluate olities functional status of dopaminergic neurons. This is chost realized by table 7, in which a number of examples migresent a clear-cut *uncoupling* of DA synthesis/me the functional status of dopaminergic neurons. This is charposet realized by table 7, in which a number of examples minopresent a clear-cut *uncoupling* of DA synthesis/metabo-
pomism (DOPAC) and release (3-MT). These exam

(c) Changes in 3-MT levels are indicative of DA release Therefore, in the case of altered DA synthesis rates, and its subsequent methylation in the cleft and glial cells changes in the steady-state levels of DA metabolite and release are *coupled* processes (table 8) and demo
and release are *coupled* processes (table 8) and demo
strate that false conclusions would be derived if HVA ies compared to those of vehicle-treated, age-matched cohorts.
and release are *coupled* processes (table 8) and demonstrate that false conclusions would be derived if HVA or
DOPAC were used as indices of DA release and co res compared to those of vehicle-treated, age-matched cohorts.

and release are *coupled* processes (table 8) and demoint strate that false conclusions would be derived if HVA

DOPAC were used as indices of DA release and and release are *coupled* processes (table 8) and demonstrate that false conclusions would be derived if HVA or DOPAC were used as indices of DA release and correlated with behavioral or postsynaptic changes after drug tre and release are *coupled* processes (table 8) and demonstrate that false conclusions would be derived if HVA or DOPAC were used as indices of DA release and correlated with behavioral or postsynaptic changes after drug tre strate that false conclusions would be derived if HVA or
DOPAC were used as indices of DA release and corre-
lated with behavioral or postsynaptic changes after drug
treatment. Therefore, in contrast to studies of choliner DOPAC were used as indices of DA release and corre-
lated with behavioral or postsynaptic changes after drug
treatment. Therefore, in contrast to studies of cholinergic
(221) or amino acid-utilizing (210) pathways, where
m lated with behavioral or postsynaptic changes after d
treatment. Therefore, in contrast to studies of choline
(221) or amino acid-utilizing (210) pathways, wh
measurements of transmitter turnover are tightly c
pled with tr treatment. Therefore, in contrast to studies of cholinergic (221) or amino acid-utilizing (210) pathways, where measurements of transmitter turnover are tightly coupled with transmitter synthesis and release, measurements (221) or amino acid-utilizing (210) pathways, where
measurements of transmitter turnover are tightly cou-
pled with transmitter synthesis and release, measure-
ments of DA turnover allow only limited interpretations
of cha measurements of transmitter turnover are tightly coupled with transmitter synthesis and release, measurements of DA turnover allow only limited interpretations of changes in dopaminergic transmission. There is no logical f pled with transmitter synthesis and release, measurements of DA turnover allow only limited interpretations of changes in dopaminergic transmission. There is no logical framework for the use of such measurements as markers ments of DA turnover allow only limited interpretation
of changes in dopaminergic transmission. There is r
logical framework for the use of such measurements of
markers for DA release. It should thus be clear tha
measureme of changes in dopaminergic transmission. There
logical framework for the use of such measureme
markers for DA release. It should thus be clea
measurements of DA turnover utilizing precursor
ing (77, 185), measurements of L markers for DA release. It should thus be clear that measurements of DA turnover utilizing precursor labeling $(77, 185)$, measurements of L- $(3,4$ -dihydroxyset that the set of DA turnover allow and the decline in DA mathematic (T7, 185), measurement of DA turnover utilizing precursor is and the set of the decline in DA mathematic that false conclusions would be derived if HV measurements of DA turnover utilizing precursor label-
ing (77, 185), measurements of L-(3,4-dihydroxy-
phenyl)alanine (L-DOPA) accumulation after inhibition
of DOPA decarboxylase, or monitoring the decline in DA
levels af ing (77, 185), measurements of L-(3,4-dihydroxy-
phenyl)alanine (L-DOPA) accumulation after inhibition
of DOPA decarboxylase, or monitoring the decline in DA
levels after inhibition of tyrosine hydroxylase are only
indices of DOPA decarboxylase, or monitoring the decline in DA
levels after inhibition of tyrosine hydroxylase are only
indices of DA synthesis rates and not release. However,
as in cholinergic and amino acidergic pathways, DA
neu of DOPA decarboxylase, or monitoring the decline in DA
levels after inhibition of tyrosine hydroxylase are only
indices of DA synthesis rates and not release. However,
as in cholinergic and amino acidergic pathways, DA
neu levels after inhibition of tyrosine hydroxylase are only indices of DA synthesis rates and not release. However, as in cholinergic and amino acidergic pathways, DA neurons possess the ability to maintain the steady-state c indices of DA synthesis rates and not release. However, as in cholinergic and amino acidergic pathways, DA neurons possess the ability to maintain the steady-state concentration of DA during changes in neuronal activity. T as in cholinergic and amino acidergic pathways, DA
neurons possess the ability to maintain the steady-state
concentration of DA during changes in neuronal activity.
Therefore, in the case of altered DA synthesis rates,
cha neurons possess the ability to maintain the steady-state
concentration of DA during changes in neuronal activity.
Therefore, in the case of altered DA synthesis rates,
changes in the steady-state levels of DA metabolites
a concentration of DA during changes in ne
Therefore, in the case of altered DA s
changes in the steady-state levels of I
allow an investigator to determine if st
synthetic activity are coupled to release.
Caution must be us nerefore, in the case of altered DA synthesis rat
anges in the steady-state levels of DA metaboli
low an investigator to determine if such changes
nthetic activity are coupled to release.
Caution must be used in the interp

changes in the steady-state levels of DA metabolites
allow an investigator to determine if such changes in
synthetic activity are coupled to release.
Caution must be used in the interpretation of metab-
olite concentration allow an investigator to determine if such changes
synthetic activity are coupled to release.
Caution must be used in the interpretation of meta
olite concentration data when DA steady-state leve
change. Indeed, in such ca synthetic activity are coupled to release.
Caution must be used in the interpretation of meta
olite concentration data when DA steady-state leve
change. Indeed, in such cases it is imperative to dete
mine the time course a Caution must be used in the interpretation of metab-
olite concentration data when DA steady-state levels
change. Indeed, in such cases it is imperative to deter-
mine the time course and characteristics for the devel-
opm olite concentration data when DA steady-state levels
change. Indeed, in such cases it is imperative to deter-
mine the time course and characteristics for the devel-
opment of a new steady-state level of DA. The use of
the change. Indeed, in such cases it is imperative to deter-
mine the time course and characteristics for the devel-
opment of a new steady-state level of DA. The use of
these precautions and the aquisition of key indices of D

¹⁷⁴ **WOOD AND ALTAR**

^a **DA** release as assessed by brain dialysis, voltammetry, or push-pull perfusion.

Examples of pharmacological treatments in which DA metabolism and release are coupled processes

* **DA release as** assessed by brain dialysis, voltammetry, or push-pull perfusion. ^t **O.T., olfactory tubercule.**

mouse striatum

* DA release as assessed by brain dialysis, voltammetry, or push-pull pe

t O.T., olfactory tubercule.

utmost importance in the design of studies to evaluate

the more complex roles of polysynaptic circuit * DA release as assessed by brain dialysis, voltammetry, or push-pull perful \dagger O.T., olfactory tubercule.
utmost importance in the design of studies to evaluate inc
the more complex roles of polysynaptic circuits and cr utmost importance in the design of studies to evaluate
the more complex roles of polysynaptic circuits and
cotransmitters in the regulation of dopaminergic transmission.

Iv. Pharmacology

transmitters in the regulation of dopaminergic transision.

IV. Pharmacology

In the following discussion of pharmacological modu-

ion of 3-MT levels (table 9), unless otherwise specific mission.

IV. Pharmacology

In the following discussion of pharmacological modu-

lation of 3-MT levels (table 9), unless otherwise specified,

all data are concerned with the rat striatum. In this **all data are concerned with the rat striatum.** In the following discussion of pharmacological modulation of 3-MT levels (table 9), unless otherwise specified, b all data are concerned with the rat striatum. In this secti IV. Pharmacology both
In the following discussion of pharmacological modu-
lation of 3-MT levels (table 9), unless otherwise specified, bel
all data are concerned with the rat striatum. In this
section, we will cover spec In the following discussion of pharmacological modu-
lation of 3-MT levels (table 9), unless otherwise specified, beh
all data are concerned with the rat striatum. In this The
section, we will cover species differences wh lation of 3-MT levels (table 9), unless otherwise specified, all data are concerned with the rat striatum. In this section, we will cover species differences whenever they have been encountered. Whenever possible, changes all data are concerned with the rat striatum. In this section, we will cover species differences whenever they have been encountered. Whenever possible, changes in 3-MT levels will be compared with changes in DA collected have been encountered. Whenever possible, changes in

MT levels will be compared with changes in DA col-
ted in push-pull perfusates and brain dialysates.
Enzyme Inhibitors
The tyrosine hydroxylase inhibitor, AMPT, inhibits
A synthesis, resulting in rapid decreases in striata lected in push-pull perfusates and brain dialysates.

A. Enzyme Inhibitors

The tyrosine hydroxylase inhibitor, AMPT, inhibits

DA synthesis, resulting in rapid decreases in striatal

steady-state levels of DA, DOPAC, HVA, A. *Enzyme Inhibitors*
The tyrosine hydroxylase inhibitor, AMPT, inhibits
DA synthesis, resulting in rapid decreases in striatal
steady-state levels of DA, DOPAC, HVA, and 3-MT (58).
Using trans-striatal dialysis, identica A. Enzyme Innibitors

The tyrosine hydroxylase inhibitor, AMPT, inhibits

DA synthesis, resulting in rapid decreases in striatal str

steady-state levels of DA, DOPAC, HVA, and 3-MT (58). dec

Using trans-striatal dialysis The tyrosine hydroxylase inhibitor, AMPT, inhibits
DA synthesis, resulting in rapid decreases in striatal sti
steady-state levels of DA, DOPAC, HVA, and 3-MT (58). de
Using trans-striatal dialysis, identical actions have b DA synthesis, resulting in rapid decreases in striatal s
steady-state levels of DA, DOPAC, HVA, and 3-MT (58). d
Using trans-striatal dialysis, identical actions have been
observed for DA, DOPAC, and HVA collected in the
d steady-state level
Using trans-st
observed for I
dialysates (90)
in this study.
The monoar Using trans-striatal dialysis, identical actions have been
observed for DA, DOPAC, and HVA collected in the
dialysates (90); unfortunately 3-MT was not measured
in this study.
The monoamine oxidase inhibitor (MAOI), pargyl

increases striatal steady-state levels of 3-MT and decreases DOPAC and HVA levels (41, 101, 203, 211, 216). erfusion.
increases striatal steady-state levels of 3-MT and de-
creases DOPAC and HVA levels (41, 101, 203, 211, 216).
Similiarly, striatal dialysates, after pargyline administra-Similiarly, striatal steady-state levels of 3-MT and
creases DOPAC and HVA levels (41, 101, 203, 211, 3
Similiarly, striatal dialysates, after pargyline admini
tion, contain increased DA and 3-MT along with increases striatal steady-state levels of 3-MT and decreases DOPAC and HVA levels (41, 101, 203, 211, 216).
Similiarly, striatal dialysates, after pargyline administration, contain increased DA and 3-MT along with decrease increases striatal steady-state levels of 3-MT and decreases DOPAC and HVA levels (41, 101, 203, 211, 216).
Similiarly, striatal dialysates, after pargyline administra-
tion, contain increased DA and 3-MT along with decrea creases DOPAC and HVA levels (41, 101, 203, 211, 216).
Similiarly, striatal dialysates, after pargyline administra-
tion, contain increased DA and 3-MT along with de-
creased HVA and DOPAC (90, 106, 215; fig. 4). With
both Similiarly, striatal dialysates, after pargyline administra-
tion, contain increased DA and 3-MT along with de-
creased HVA and DOPAC (90, 106, 215; fig. 4). With
both the tissue steady-state studies and the brain dialysis tion, contain increased DA and 3-MT along with de-
creased HVA and DOPAC (90, 106, 215; fig. 4). With
both the tissue steady-state studies and the brain dialysis
measurements, the changes in DOPAC and HVA lag
behind the ra creased HVA and DOPAC (90, 106, 215; fig. 4). With
both the tissue steady-state studies and the brain dialysis
measurements, the changes in DOPAC and HVA lag
behind the rapid changes in DA release by 15 to 45 min.
The MAOboth the tissue steady-state studies and the brain dialysis
measurements, the changes in DOPAC and HVA lag
behind the rapid changes in DA release by 15 to 45 min.
The MAO-A inhibitor, clorgyline, also increases striatal
st measurements, the changes in DOPAC and HVA lag
behind the rapid changes in DA release by 15 to 45 min.
The MAO-A inhibitor, clorgyline, also increases striatal
steady-state 3-MT levels (191) and DA collected in stria-
tal behind the rapid changes in DA release by 15 to 45 min.
The MAO-A inhibitor, clorgyline, also increases striatal
steady-state 3-MT levels (191) and DA collected in stria-
tal dialysates (100). In contrast, the manoamine ox The MAO-A inhibitor, clorgyline, also increases striatal The MAO-A minimot, clotymic, also increases striatal
steady-state 3-MT levels (191) and DA collected in stria-
tal dialysates (100). In contrast, the manoamine oxidase
(type B) (MAO-B) inhibitor, deprenyl, does not increas els and dialysates (100). In contrast, the manoamine oxidase (type B) (MAO-B) inhibitor, deprenyl, does not increase DA collected in striatal dialysates (100). The reversible MAOI, minaprine (97), also increases striatal 3 A collected in striatal dialysates (100). The reversible
AOI, minaprine (97), also increases striatal 3-MT lev-
and decreases DOPAC with these actions reversing
tween 2 and 3 h (64).
The COMT inhibitor, tropolone, rapidly Driverside in Striatal dialystics (100). The reverside MAOI, minaprine (97), also increases striatal 3-MT levels and decreases DOPAC with these actions reversing between 2 and 3 h (64).
The COMT inhibitor, tropolone, rapid

between 2 and 3 h (64).
The COMT inhibitor, tropolone, rapidly decreases
striatal 3-MT levels (191, 201). A parallel but slower decreases DOPAC with these actions reversing
between 2 and 3 h (64).
The COMT inhibitor, tropolone, rapidly decreases
striatal 3-MT levels (191, 201). A parallel but slower
decline in HVA levels has also been monitored (20 between 2 and 3 h (64).

The COMT inhibitor, tropolone, rapidly decreases

striatal 3-MT levels (191, 201). A parallel but slower

decline in HVA levels has also been monitored (201),

supporting the more rapid turnover of The COMT inhibitor, tropolone, rapidly decretizated 3-MT levels (191, 201). A parallel but sl decline in HVA levels has also been monitored (supporting the more rapid turnover of 3-MT as asseted and anti-
after inhibition after inhibition of monoamine oxidase (212, 213).
B. D-1 Agonists and Antagonists
The initial in vitro studies of Farnebo and Hamberger supporting the more rapid turnover of $3-MT$ as assessed

(62) and others (115, 173) used apomorphine to show

PHARMACOLOGICAL REVIEWS

3-MT MEASUREMENTS AND DA RELEASE *IN VIVO* FROM NEURONS 175
TABLE 9 TABLE 9-Continued

HARM

PHARMACOLOGICAL REVIEWS

3-MT MEASUREMENTS AND DA F
TABLE 9
Summary table of drug effects on rat striatal DOPAC and 3-MT
steady-state levels after fixation with microwave irradiation

^C **One** hundred *%,* no statistically significant change.

TABLE 9-Continued

Drug (mg/kg, route)		Time (min)	DOPAC	$3-MT$	Ref.
			(% of control)		
MR 2034	(2, i.p.)	60	100	100	225
	(8, i.p.)	60	100	100	225
	(32, i.p.)	60	100	100	225
Ethylketazocine	(4, i.p.)	60	100	100	225
	(16, i.p.)	60	100	100	225
Trifluadom	(2, i.p.)	60	100	100	207
U-50488H	(8, i.p.)	60	100	100	207
Butorphanol	(2, i.p.)	60	129	100	207
	(16, i.p.)	60	153	100	207
	(64, i.p.)	60	100	100	207
Pentazocine	(32, i.p.)	60	164	100	225
	(64, i.p.)	60	100	100	225
Cyclazocine	(8, i.p.)	60	148	100	225
	(32, i.p.)	60	100	100	225
DADLE	$(0.002, \text{ivt.})\dagger$	60	147	100	225
	$(0.01, \text{ivt.})$	60	176	100	225
	$(0.003, \text{ivt.})$	60	125	100	226
Naloxone	(5, i.p.)	60	100	100	226
Kyotorphan	$(0.8, \text{ivt.})$	60	229	100	148
Muscarinics					
Oxotremorine	(1, i.p.)	60	220	73	201
t ivt., intraventricular.					

 $\begin{array}{llll}\n\text{Oxotremorine} & (1, \text{i.p.}) & 60 & 220 & 73 & 201 & \text{erve} \\
\hline\n\text{t} \text{ivt., intraventricular.} & \text{cho} \\
\text{that dopamine autoreceptors modulate the release of test} \\
\text{dopamine in the striatum.} & \text{The advent of selective D-1} & \text{pro} \\
\text{and D-2 receptor agonists and antagonists allowed the test}\n\end{array}$ thit, intraventricular.

that dopamine autoreceptors modulate the release of test

dopamine in the striatum. The advent of selective D-1 pre

and D-2 receptor agonists and antagonists allowed the

D-2 nature of the autorec that dopamine autoreceptors modulate the release of dopamine in the striatum. The advent of selective D-
and D-2 receptor agonists and antagonists allowed th
D-2 nature of the autoreceptor to be unequivocally identified. that dopamine autoreceptors modulate the release c
dopamine in the striatum. The advent of selective D-
and D-2 receptor agonists and antagonists allowed th
D-2 nature of the autoreceptor to be unequivocally iden
tified. T dopamine in the striatum. The advent of selective D-1 and D-2 receptor agonists and antagonists allowed the D-2 nature of the autoreceptor to be unequivocally identified. Thus, unlike D-2 stimulation, D-1 receptor stimula and D-2 receptor agonists and antagonists allowed t
D-2 nature of the autoreceptor to be unequivocally ide
tified. Thus, unlike D-2 stimulation, D-1 receptor stin
ulation with 2,3,4,5-tetrahydro-1-phenyl-1H-3-benzaz
pine-D-2 nature of the autoreceptor to be unequivocally identified. Thus, unlike D-2 stimulation, D-1 receptor stimulation with 2,3,4,5-tetrahydro-1-phenyl-1H-3-benzazepine-7,8-diol (SKF 38393) fails to decrease the potassium-i ulation with 2,3,4,5-tetrahydro-1-phenyl-1H-3-benzaze-
pine-7,8-diol (SKF 38393) fails to decrease the potas-
sium-induced (176) or electrical stimulation-induced
(114, 174) release of [³H]dopamine from neostriatal
slic ulation with 2,3,4,5-tetrahydro-1-phenyl-1H-3-benzaze-
pine-7,8-diol (SKF 38393) fails to decrease the potas-
sium-induced (176) or electrical stimulation-induced ef
(114, 174) release of [³H]dopamine from neostriatal di pine-7,8-diol (SKF 38393) fails to decrease the potas-
sium-induced (176) or electrical stimulation-induced
(114, 174) release of [³H]dopamine from neostriatal c
slices. The ability of D-2 agonists to lower the release o sium-induced (176) or electrical stimulation-induced e:
(114, 174) release of [³H]dopamine from neostriatal d
slices. The ability of D-2 agonists to lower the release of e:
[³H]dopamine is blocked by D-2, but not D-1, (114, 174) release of [³H]dopamine from neostriatal slices. The ability of D-2 agonists to lower the release of [³H]dopamine is blocked by D-2, but not D-1, selective antagonists. Similar in vitro findings have been o slices. The ability of D-2 agonists to low
[³H]dopamine is blocked by D-2, but n
antagonists. Similar in vitro findings has
for the guinea pig spinal cord (107) an
and cingulate cortices (143, 144, 179).
Changes in in vi H]dopamine is blocked by D-2, but not D-1, selective datagonists. Similar in vitro findings have been obtained the r the guinea pig spinal cord (107) and rat prefrontal med cingulate cortices (143, 144, 179). Striated 3-M antagonists. Similar in vitro findings have been obtained
for the guinea pig spinal cord (107) and rat prefrontal
and cingulate cortices (143, 144, 179).
Changes in in vivo striatal 3-MT levels following the
administration

for the guinea pig spinal cord (107) and rat prefrontal m
and cingulate cortices $(143, 144, 179)$.
Changes in in vivo striatal 3-MT levels following the wadministration of D-1 or D-2-selective compounds parallel the pa and cingulate cortices (143, 144, 179). strictly strictly the changes in in vivo striatal 3-MT levels following the with administration of D-1 or D-2-selective compounds paranellel the patterns obtained with these in vitro Changes in in vivo striatal 3-MT levels following the with
administration of D-1 or D-2-selective compounds par-
allel the patterns obtained with these in vitro studies. 3-
these MT levels in mouse striatum are increased $(S)-(+)$ -8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenylallel the patterns obtained with these in vitro studies. 3
MT levels in mouse striatum are increased by the D-4
antagonists haloperidol and metoclopramide but not by
(S)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-
1 4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benazepine-7-ol 1H-3-benzazepine-7-ol (SCH 23390) or 7-bromo-2,3, crease, striatal 3-MT but like typical neuroleptics fre-
4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benazepine-7-ol quently elevate DOPAC and HVA (15, 78, 218).
(SKF 83566) (15 (S)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-
1H-3-benzazepine-7-ol (SCH 23390) or 7-bromo-2,3, c
4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benazepine-7-ol q
(SKF 83566) (15, 33). Similar effects on accumulated 3-
MT 1H-3-benzazepine-7-ol (SCH 23390) or 7-bromo-2,3,
4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benazepine-7-ol
(SKF 83566) (15, 33). Similar effects on accumulated 3-
MT levels after pargyline have also been observed for
haloper nists $trans-1,3,4,4\alpha,5,10\beta$ -hexahydro-4-propyl-2H-[1] (SKF 83566) (15, 33). Similar effects on accumulated 3-
MT levels after pargyline have also been observed for ure
haloperidol and SCH 23390 (160). The partial D-2 ago-
mists *trans*-1,3,4,4 α ,5,10 β -hexahydro-4-propyl MT levels after pargyline have also been
haloperidol and SCH 23390 (160). The pa
nists $trans-1,3,4,4\alpha,5,10\beta$ -hexahydro-4-
benzopyrano[3,4-b]pyridin-9-ol (CGS 158
full D-2 agonist $(4\alpha$ -*R-trans*)-4,4 α ,5,6,7,
dro-5-*n*haloperidol and SCH 23390 (160). The partial D-2 ago-
nists trans-1,3,4,4 α ,5,10 β -hexahydro-4-propyl-2H-[1]
benzopyrano[3,4-b]pyridin-9-ol (CGS 15855A) and the
full D-2 agonist (4 α -R-trans)-4,4 α ,5,6,7,8,8 α ,9 mists $trans-1,3,4,4\alpha,5,10\beta$ -hexahydro-4-propyl-2H-[1] at
benzopyrano[3,4-b]pyridin-9-ol (CGS 15855A) and the afull D-2 agonist $(4\alpha$ -R-trans)-4,4 α ,5,6,7,8,8 α ,9-octahy- ic
dro-5-n-propyl-2H-pyrazolo-3,4- γ -guinolin benzopyrano $[3,4-b]$ pyridin-9-ol (CGS 15855A) and the an
full D-2 agonist $(4\alpha \cdot R \cdot trans) - 4, 4\alpha, 5, 6, 7, 8, 8\alpha, 9 - octahy-$ ica
dro-5-n-propyl-2H-pyrazolo-3,4- γ -guinoline (LY 171555) ch
decrease 3-MT, while the D-1 agonist full D-2 agonist $(4\alpha$ -R-trans)-4,4 α ,5,6,7,8,8 α ,9-octahy-ical
dro-5-n-propyl-2H-pyrazolo-3,4- γ -guinoline (LY 171555) chlo
decrease 3-MT, while the D-1 agonist SKF 38393 does by l
not lower 3-MT unless high does dro-5-*n*-propyl-2*H*-pyrazolo-
decrease 3-MT, while the D
not lower 3-MT unless high
used, and even then only sm
3-MT are found (4, 6, 33).

WOOD AND ALTAR
These in vitro and in vivo studies confirm the D-2
nature of the autoreceptor that controls dopamine release NALTAR
These in vitro and in vivo studies confirm the D-2
nature of the autoreceptor that controls dopamine release
and rule out the D-1 receptor in the autoreceptor control ALTAR
These in vitro and in vivo studies confirm the D-2
nature of the autoreceptor that controls dopamine release
and rule out the D-1 receptor in the autoreceptor control
of DA release. While this conclusion is consisten These in vitro and in vivo studies confirm the D-2
nature of the autoreceptor that controls dopamine release
and rule out the D-1 receptor in the autoreceptor control
of DA release. While this conclusion is consistent with These in vitro and in vivo studies confirm the D-2
nature of the autoreceptor that controls dopamine release
and rule out the D-1 receptor in the autoreceptor control
of DA release. While this conclusion is consistent with nature of the autoreceptor that controls dopamine release
and rule out the D-1 receptor in the autoreceptor control
of DA release. While this conclusion is consistent with
the absence of D-1 receptors on the terminals and and rule out the D-1 receptor in the autoreceptor control
of DA release. While this conclusion is consistent with
the absence of D-1 receptors on the terminals and cell
bodies of nigrostriatal neurons (9), studies with str of DA release. While this conclusion is consistent with the absence of D-1 receptors on the terminals and cell bodies of nigrostriatal neurons (9), studies with striatal microdialysis present inconsistent results for the D the absence of D-1 receptors on the terminals and cell
bodies of nigrostriatal neurons (9), studies with striatal
microdialysis present inconsistent results for the D-1
receptor control of release. Imperato et al (91) obse bodies of nigrostriatal neurons (9), studies with striat microdialysis present inconsistent results for the D
receptor control of release. Imperato et al (91) observe
and Zetterstrom et al. (228) failed to observe, increas microdialysis present inconsistent results for the D
receptor control of release. Imperato et al (91) observe
and Zetterstrom et al. (228) failed to observe, increas
in the amount of striatal dopamine recovered into micro
 receptor control of release. Imperato et al (91) observed, and Zetterstrom et al. (228) failed to observe, increases in the amount of striatal dopamine recovered into microdialysis probes following similar doses of the D-1 and Zetterstrom et al. (228) failed to observe, increases
in the amount of striatal dopamine recovered into micro-
dialysis probes following similar doses of the D-1 antag-
onist, SCH 23390. In contrast, Zetterstrom et al. dialysis probes following similar doses of the D-1 antag-
onist, SCH 23390. In contrast, Zetterstrom et al. (228),
but not Imperato et al. (91), reported suppressions of
dialyzed dopamine following similar doses of the D-1 onist, SCH 23390. In contrast, Zetterstrom et al. (228), but not Imperato et al. (91), reported suppressions of dialyzed dopamine following similar doses of the D-1 agonist SKF 38393. The use of general anesthesia by Zette but not Imperato et al. (91),
dialyzed dopamine following
agonist SKF 38393. The use
Zetterstrom et al. but not Imp
for some of these discrepancie
C. D-2 Antgonists *C. Deterstrom et al. 1*
 C. D-2 Antagonists
 C. D-2 Antagonists

D-2 receptor antagonists

in the amount of striatal dopamine recovered into micro-
dialysis probes following similar doses of the D-1 antag-
onist, SCH 23390. In contrast, Zetterstrom et al. (228),
but not Imperato et al. (91), reported suppressio tterstrom et al. but not Imperato et al. might account
r some of these discrepancies.
D-2 Antagonists
D-2 receptor antagonists that ameliorate psychosis but
thout inducing extrapyramidal side effects are considfor some of these discrepancies.
 $C. D-2$ Antagonists
 $D-2$ receptor antagonists that ameliorate psychosis but

without inducing extrapyramidal side effects are consid-

ered "atypical" antipsychotics, whereas $D-2$ anta C. D-2 Antagonists

D-2 receptor antagonists that ameliorate psychosis but

without inducing extrapyramidal side effects are consid-

ered "atypical" antipsychotics, whereas D-2 antagonists

that produce both effects are t $C. D-2$ Antagonists
D-2 receptor antagonists that ameliorate psychosis
without inducing extrapyramidal side effects are consered "atypical" antipsychotics, whereas $D-2$ antagonis
that produce both effects are termed "typ D-2 receptor antagonists that ameliorate psychosis but
without inducing extrapyramidal side effects are consid-
ered "atypical" antipsychotics, whereas D-2 antagonists
that produce both effects are termed "typical" antipsy without inducing extrapyramidal side effects are considered "atypical" antipsychotics, whereas D-2 antagonists
that produce both effects are termed "typical" antipsy-
chotics. Potencies of these drugs in several behavioral ered "atypical" antipsychotics, whereas D-2 antagonists
that produce both effects are termed "typical" antipsy-
chotics. Potencies of these drugs in several behavioral
tests can predict their antipsychotic efficacy and the that produce both effects are termed "typical" antipsy-
chotics. Potencies of these drugs in several behavioral
tests can predict their antipsychotic efficacy and their
propensity to induce extrapyramidal side effects. The chotics. Potencies of these drugs in several behavioral
tests can predict their antipsychotic efficacy and their
propensity to induce extrapyramidal side effects. These
tests are, respectively, inhibition by the drug of ei tests can predict their antipsychotic efficacy and their
propensity to induce extrapyramidal side effects. These
tests are, respectively, inhibition by the drug of either
apomorphine-induced cage-climbing behavior and apopropensity to induce extrapyramidal side effects. These
tests are, respectively, inhibition by the drug of either
apomorphine-induced cage-climbing behavior and apo-
morphine-induced stereotypic behavior $(52, 70)$. When
 tests are, respectively, inhibition by the drug of either apomorphine-induced cage-climbing behavior and apomorphine-induced stereotypic behavior (52, 70). When drug potencies in these tests have been calculated, in vivo n apomorphine-induced cage-climbing behavior and apo-
morphine-induced stereotypic behavior (52, 70). When
drug potencies in these tests have been calculated, in
vivo neurochemical measurements can be made at the
effective d morphine-induced stereotypic behavior (52, 70). When drug potencies in these tests have been calculated, vivo neurochemical measurements can be made at the effective dose or at a multiple of the effective dose discern a ne drug potencies in these tests have been calculated,
vivo neurochemical measurements can be made at t
effective dose or at a multiple of the effective dose
discern a neurochemical mechanism that might diffe
entiate these tw vivo neurochemical measurements can be made at the
effective dose or at a multiple of the effective dose to
discern a neurochemical mechanism that might differ-
entiate these two groups of drugs. Clozapine and thiori-
daz effective dose or at a multiple of the effective dose to
discern a neurochemical mechanism that might differ-
entiate these two groups of drugs. Clozapine and thiori-
dazine have been clearly distinguished in this way from discern a neurochemical mechanism that might differentiate these two groups of drugs. Clozapine and thioridazine have been clearly distinguished in this way from the typical neuroleptics haloperidol, chlorpromazine, and me entiate these two groups of drugs. Clozapine and thiori-
dazine have been clearly distinguished in this way from
the typical neuroleptics haloperidol, chlorpromazine, and
metoclopramide by their diminished capacity to alte dazine have been clearly distinguished in this way from
the typical neuroleptics haloperidol, chlorpromazine, and
metoclopramide by their diminished capacity to alter
striatal dopamine release. This has been demonstrated
w the typical neuroleptics haloperidol, chlorpromazine, and
metoclopramide by their diminished capacity to alte
striatal dopamine release. This has been demonstrate
with push-pull cannulae (22), in vivo microdialysis (227)
a metoclopramide by their diminished capacity to alt
striatal dopamine release. This has been demonstrate
with push-pull cannulae (22), in vivo microdialysis (227
and in vivo voltammetry (89, 112). Not surprisingl
these find striatal dopamine release. This has been demonstrated
with push-pull cannulae (22), in vivo microdialysis (227),
and in vivo voltammetry (89, 112). Not surprisingly,
these findings have been corroborated with 3-MT meas-
ur with push-pull cannulae (22) , in vivo microdialysis (227) , and in vivo voltammetry (89, 112). Not surprisingly, these findings have been corroborated with 3-MT measurements using gas chromatography-mass spectroscopy (GC-MS) methods (described in section II, A and B). Clozapine and these findings have been corroborated with 3-MT measurements using gas chromatography-mass spectroscopy (GC-MS) methods (described in section II, A and B). Clozapine and thioridazine leave unaltered, or even decrease, stri urements using gas chromatography-mass spectroffic (GC-MS) methods (described in section II, A at Clozapine and thioridazine leave unaltered, or ev crease, striatal 3-MT but like typical neuroleptic quently elevate DOPAC a Clozapine and thioridazine leave unaltered, or even decrease, striatal 3-MT but like typical neuroleptics frequently elevate DOPAC and HVA $(15, 78, 218)$.
In a more comprehensive study $(14a)$, we have meas-

Clozapine and thioridazine leave unaltered, or even
crease, striatal 3-MT but like typical neuroleptics is
quently elevate DOPAC and HVA (15, 78, 218).
In a more comprehensive study (14a), we have me
ured 3-MT, DOPAC, HVA, crease, striatal 3-MT but like typical neuroleptics frequently elevate DOPAC and HVA (15, 78, 218).
In a more comprehensive study (14a), we have measured 3-MT, DOPAC, HVA, and DA in the caudate-
putamen following p.o. admi quently elevate DOPAC and HVA (15, 78, 218).
In a more comprehensive study (14a), we have meas-
ured 3-MT, DOPAC, HVA, and DA in the caudate-
putamen following p.o. administration to mice of ten
atypical antipsychotic drug In a more comprehensive study (14a), we have measured 3-MT, DOPAC, HVA, and DA in the caudate-
putamen following p.o. administration to mice of ten
atypical antipsychotic drugs or candidates and six typical
antipsychotics. ured 3-MT, DOPAC, HVA, and DA in the caudate
putamen following p.o. administration to mice of ter
atypical antipsychotic drugs or candidates and six typica
antipsychotics. The first pattern, obtained with the typ
ical neur putamen following p.o. administration to mice of ten
atypical antipsychotic drugs or candidates and six typical
antipsychotics. The first pattern, obtained with the typ-
ical neuroleptics (setoperone, perlapine, haloperido atypical antipsychotic drugs or candidates and six typical
antipsychotics. The first pattern, obtained with the typ-
ical neuroleptics (setoperone, perlapine, haloperidol,
chlorpromazine, and metoclopramide), was character MT levels) and even larger increases in dopamine meical neuroleptics (setoperone, perlapine, haloperidol,
chlorpromazine, and metoclopramide), was characterized
by large (37 to 79%) increases in dopamine release (3-
MT levels) and even larger increases in dopamine me-
tabo chlorpromazine, and metoclopramide), was characterized
by large (37 to 79%) increases in dopamine release (3-
MT levels) and even larger increases in dopamine me-
tabolism, as measured by DOPAC (97 to 297% increases)
and H

PHARMACOLOGICAL REVIEW!

3-MT MEASUREMENTS AND DA RELI

TABLE 10

Actions of classical neuroleptic agents on mouse striatal DOPAC and 3-

MT levels at behaviorally relevant doses. Drugs were injected p.o. at 1

(top row) or 6 (bottom row) times t TABLE 10
(top rop) or *for classical neuroleptic agents on mouse striatal DOPAC and 3*
(top row) or 6 *(bottom row)* times the 50% effective dose for the
(top row) or 6 *(bottom row)* times the 50% effective dose for *i*nduced classical neuroleptic agents on mouse striatal DOPAC and 3-
MT levels at behaviorally relevant doses. Drugs were injected p.o. at 1
(top row) or 6 (bottom row) times the 50% effective dose for the
inhibition

at behaviorally relevant doees. Drugs were injected p.o. *a b* or 6 (bottom row) times the 50% effective dose for the of apomorphine-induced climbing. Mice were sacrificed BW 234U was injected i.p. at the 50% effective d min later. BW $234U$ was injected i.p. at the 50% effective dose in the

* Mean for 6 to 8 per group, expressed as the percentage of control
lues of the vehicle-injected group.
 $\dagger P < 0.01$ greater than control.
 $\dagger P < 0.05$ (Dunnett's test). 12
 ***** Mean for 6 to 8 per group, express of the vehicle-injected group
 $\uparrow P < 0.01$ greater than control.
 $\downarrow P < 0.05$ (Dunnett's test). ^{*} Mean for 6 to 8 per group
ues of the vehicle-injected g
† $P < 0.01$ greater than cont
‡ $P < 0.05$ (Dunnett's test).

values of the vehicle-injected group.
 $\uparrow P < 0.01$ greater than control.
 $\downarrow P < 0.05$ (Dunnett's test).

Tochemical profile has also been observed in the rat or

mouse striatum following the administration of the typ- $\uparrow P < 0.01$ greater than control.
 $\downarrow P < 0.05$ (Dunnett's test).

Frochemical profile has also been observed in the rat or

mouse striatum following the administration of the typ-

cical antipsychotics, chlorpromazine, $f \sim 0.06$ (bunned s ass).

For the mouse striatum following the administration of the typical antipsychotics, chlorpromazine, haloperidol, meto-

clopramide, perlapine, and to a lesser extent, thioridazine rochemical profile has also been observed in the rat or
mouse striatum following the administration of the typ-
ical antipsychotics, chlorpromazine, haloperidol, meto-
clopramide, perlapine, and to a lesser extent, thiorid rochemical profile has also been observed in the rat or

mouse striatum following the administration of the typ-

ical antipsychotics, chlorpromazine, haloperidol, meto-

clopramide, perlapine, and to a lesser extent, thi ical antipsychotics, chlorpromazine, haloperidol, meto-
clopramide, perlapine, and to a lesser extent, thioridazine
for striatal dopamine release (3-MT) and metabolism
 $\frac{1}{3}$
(DOPAC) (15, 78, 218, 220, 227) or metabolis for striatal dopamine release $(3-MT)$ and metabolism $(DOPAC)$ $(15, 78, 218, 220, 227)$ or metabolism only $(37, 38, 172, 192)$. The one typical neuroleptic that failed to increase dopamine release while markedly elevating for striatal dopamine release $(3\text{-}MT)$ and metabolism $(DOPAC)$ $(15, 78, 218, 220, 227)$ or metabolism only $(37, 38, 172, 192)$. The one typical neuroleptic that failed to coincrease dopamine release while markedly eleva (DOPAC) (15, 78, 218, 220, 227) or metabolism only (37, 38, 172, 192). The one typical neuroleptic that failed to contrincrease dopamine release while markedly elevating meration tabolism was pimozide. However, pimozide, 38, 172, 192). The one typical neuroleptic that failed to coincrease dopamine release while markedly elevating metabolism was pimozide. However, pimozide, unlike the best other typical neuroleptics tested, is a potent calc increase dopamine release while markedly elevating metabolism was pimozide. However, pimozide, unlike the other typical neuroleptics tested, is a potent calcium channel receptor blocker in the brain (75). This action of pi tabolism was pimozide. However, pimozide, unlike the best other typical neuroleptics tested, is a potent calcium cluster channel receptor blocker in the brain (75). This action sum of pimozide may prevent calcium-dependent channel receptor blocker in the brain (75) . This action
of pimozide may prevent calcium-dependent dopamine
release during concomitant $D-2$ receptor blockade, as
described for the calcium channel antagonist nimodipine
(142). pimozide may prevent calcium-dependent dopamin
lease during concomitant D-2 receptor blockade, a
scribed for the calcium channel antagonist nimodipin
42).
The second pattern, obtained with the atypical com-
unds, was chara

release during concomitant D-2 receptor blockade, as to indescribed for the calcium channel antagonist nimodipine not (142).

The second pattern, obtained with the atypical compounds, was characterized by no change or a *d* described for the calcium channel antagonist nimodipine

(142).

The second pattern, obtained with the atypical com-

pounds, was characterized by no change or a *decrease* in

3-MT at either dose (table 11). In only 4 of (142). The second pattern, obtained with the atypical compounds, was characterized by no change or a *decrease* in 3-MT at either dose (table 11). In only 4 of the 24 groups receiving an atypical compound were 3-MT levels The second pattern, obtained with the a
pounds, was characterized by no change or
3-MT at either dose (table 11). In only 4 of t
receiving an atypical compound were 3-M
creased. 5-(4-Methyl-1-piperazinyl)imidazo
benzothiad pounds, was characterized by no change or a *decrease* in 3-MT at either dose (table 11). In only 4 of the 24 group receiving an atypical compound were 3-MT levels in creased. 5-(4-Methyl-1-piperazinyl)imidazo[2,1-b][1,3,5 cis-5,6-dimethoxy-2-methyl-3-[2-(4-phenyl-1-piperazincreased. 5-(4-Methyl-1-piperazinyl)imidazo[2,1-b][1,3,5]
benzothiadiazepine maleate (CGS 10746B), flumezapine,
cis-5,6-dimethoxy-2-methyl-3-[2-(4-phenyl-1-piperazin-
yl)ethyl]indoline (CL 77-328), rimcazole (BW 234U),
cloz benzothiadiazepine maleate (CGS 10746B), flumezapine, des
cis-5,6-dimethoxy-2-methyl-3-[2-(4-phenyl-1-piperazin-
yl)ethyl]indoline (CL 77-328), rimcazole (BW 234U), ant
clozapine, 3-(2-chloro-11H-dibenz[b,e]azepine-11-ylicis-5,6-dimethoxy-2-methyl-3-[2-(4-phenyl-1-piperazin-
yl)ethyl]indoline (CL 77-328), rimcazole (BW 234U),
clozapine, 3-(2-chloro-11H-dibenz[b,e]azepine-11-yli-
dene)-N,N-dimethyl-1-propanamine (RMI 81582), and
fluperlapin yl)ethyl]indoline (CL 77-328), rimcazole (BW 234U)
clozapine, 3-(2-chloro-11*H*-dibenz[*b*,*e*]azepine-11-yli
dene)-N,N-dimethyl-1-propanamine (RMI 81582), and
fluperlapine did not increase dopamine release and pro
duced v clozapine, $3-(2-\text{chloro}-11)$ -dibenz $[b,e]$ azepine-11-yli-
dene)-N,N-dimethyl-1-propanamine (RMI 81582), and
fluperlapine did not increase dopamine release and pro-
duced variable increases in dopamine metabolism. Mel-
perone i dene)-N,N-dimethyl-1-propanamine (RMI 81582), and
fluperlapine did not increase dopamine release and pro-
duced variable increases in dopamine metabolism. Mel-
perone increased dopamine release at one dose while
thioridazi fluperlapine did not increase dopamine release and pro-
duced variable increases in dopamine metabolism. Mel-
perone increased dopamine release at one dose while
thioridazine and mesoridazine increased dopamine re-
lease a duced variable increases in dopamine metabolism. Mel-
perone increased dopamine release at one dose while vir
thioridazine and mesoridazine increased dopamine re-
lease at relatively high doses but increased dopamine in
me perone increased dopamine release at one dose while
thioridazine and mesoridazine increased dopamine re-
lease at relatively high doses but increased dopamine
metabolism at most doses. Importantly, 3-MT levels were
lowered thioridazine and mesoridazine increased dopamine re-
lease at relatively high doses but increased dopamine in
metabolism at most doses. Importantly, 3-MT levels were a
lowered or remained unchanged even after doses that li

* Mean \pm SEM for 6 to 8 per g
ntrol values of the vehicle-inject
 $\dagger P < 0.05$ less than control (Du
 $\dagger P < 0.01$ greater than control.
 $\S P < 0.05$ greater than control.

control values of the vehicle-injected group.
 $\dagger P < 0.05$ less than control (Dunnett's test).
 $\dagger P < 0.01$ greater than control.

§ $P < 0.05$ greater than control.

control) or HVA (26 to 129% above control). This separation between effects on release and metabolism has been observed for clozapine (218) and CGS 10746B, a ration between effects on release and metabolism has $\frac{4}{3}P < 0.05$ greater than control.

control) or HVA (26 to 129% above control). This separation between effects on release and metabolism has

been observed for clozapine (218) and CGS 10746B, a

clozapine analog (15, control) or HVA (26 to 129% above control). This separation between effects on release and metabolism has been observed for clozapine (218) and CGS 10746B, a clozapine analog (15, 209). In the case of CGS 10746B, suppress control) or HVA (26 to 129% above control). This a
ration between effects on release and metabolism
been observed for clozapine (218) and CGS 10746
clozapine analog (15, 209). In the case of CGS 107
suppressions of 3-MT fo ration between effects on release and metabolism has
been observed for clozapine (218) and CGS 10746B, a
clozapine analog (15, 209). In the case of CGS 10746B,
suppressions of 3-MT following p.o. or i.p. administra-
tion o been observed for clozapine (218) and CGS 10746B, a
clozapine analog (15, 209). In the case of CGS 10746B,
suppressions of 3-MT following p.o. or i.p. administra-
tion occur at doses 4- to 6-fold lower than those required
 clozapine analog (15, 209). In the case of CGS 10746B,
suppressions of 3-MT following p.o. or i.p. administra-
tion occur at doses 4- to 6-fold lower than those required
to increase DOPAC and HVA, which unlike 3-MT were
no suppressions of 3-MT following p.o. or i.p. administra-
tion occur at doses 4- to 6-fold lower than those required
to increase DOPAC and HVA, which unlike 3-MT were
not lowered by any dose of CGS 10746B. The changes in
3-M tion occur at doses 4- to 6-fold lower than those required
to increase DOPAC and HVA, which unlike 3-MT were
not lowered by any dose of CGS 10746B. The changes in
3-MT, unlike those obtained for DOPAC and HVA,
correspond w to increase DOPAC and HVA, which unlike 3-MT were
not lowered by any dose of CGS 10746B. The changes in
3-MT, unlike those obtained for DOPAC and HVA,
correspond with decreases in dopamine neuron firing
rates and behaviora (15). MT, unlike those obtained for DOPAC and HVA,
rrespond with decreases in dopamine neuron firing
tes and behavioral indices of nigrostriatal suppression
5).
Overall, the resemblance of these minimal effects on
pamine release correspond with decreases in dopamine neuron firing
rates and behavioral indices of nigrostriatal suppression
(15).
Overall, the resemblance of these minimal effects on
dopamine release by atypical antipsychotics with thos

rates and behavioral indices of nigrostriatal suppression (15).

Overall, the resemblance of these minimal effects on

dopamine release by atypical antipsychotics with those

described in section IV B for the D-1 compound (15).

Overall, the resemblance of these minimal effects on

dopamine release by atypical antipsychotics with those

described in section IV B for the D-1 compounds SCH

23390 and SKF 83566 (33, 59) suggests that D-1 rece dopamine release by atypical antipsychotics with those
described in section IV B for the D-1 compounds SCH
23390 and SKF 83566 (33, 59) suggests that D-1 receptor
antagonism may contribute to the antipsychotic mecha-
nism scribed in section IV B for the D-1 compounds SCH
390 and SKF 83566 (33, 59) suggests that D-1 receptor
tagonism may contribute to the antipsychotic mecha-
sm of atypical antipsychotics (14a, 17-19).
A very large number of antagonism may contribute to the antipsychotic mecha-

23390 and SKF 83566 (33, 59) suggests that $D-1$ receptor
antagonism may contribute to the antipsychotic mecha-
nism of atypical antipsychotics $(14a, 17-19)$.
A very large number of experiments, reviewed above
and in tab nism of atypical antipsychotics (14a, 17-19).
A very large number of experiments, reviewed above
and in tabular form (table 9), corroborate the utility of
3-MT measurements for assessing dopamine release in
vivo. However, A very large number of experiments, reviewed above
and in tabular form (table 9), corroborate the utility of
3-MT measurements for assessing dopamine release in
vivo. However, some controversy concerning changes in
3-MT in and in tabular form (table 9), corroborate the utility of 3-MT measurements for assessing dopamine release in
vivo. However, some controversy concerning changes in
3-MT in the rat striatum after haloperidol has appeared
in 3-MT measurements for assessing dopamine release in
vivo. However, some controversy concerning changes in
3-MT in the rat striatum after haloperidol has appeared
in the literature. As expected from its blockade of D-2
auto vivo. However, some controversy concerning changes in 3-MT in the rat striatum after haloperidol has appeared
in the literature. As expected from its blockade of D-2
autoreceptors (62, 114, 115), this potent neuroleptic re 3-MT in the rat striatum after haloperidol has appeared
in the literature. As expected from its blockade of D-2
autoreceptors (62, 114, 115), this potent neuroleptic re-
liably augments striatal 3-MT levels for at least 8

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

aspet

¹⁷⁸ **WOOD AND ALTAR** 178 wood and
push-pull perfusates of cat caudate has been reported for sy
a number of neuroleptics including haloperidol (119). In 1 woop AND AI
push-pull perfusates of cat caudate has been reported for syst
a number of neuroleptics including haloperidol (119). In 100
the rat, however, haloperidol elevates DOPAC and HVA, auto wood AN
push-pull perfusates of cat caudate has been reported for
a number of neuroleptics including haloperidol (119). In
the rat, however, haloperidol elevates DOPAC and HVA,
but not 3-MT, at 1 h (145, 197, 202) or 2 h push-pull perfusates of cat caudate has been reported for
a number of neuroleptics including haloperidol (119). In
the rat, however, haloperidol elevates DOPAC and HVA,
but not 3-MT, at 1 h (145, 197, 202) or 2 h (191) aft push-pull perfusates of cat caudate has been reported for
a number of neuroleptics including haloperidol (119). In
the rat, however, haloperidol elevates DOPAC and HVA,
but not 3-MT, at 1 h (145, 197, 202) or 2 h (191) aft a number of neuroleptics including haloperidol (119). In
the rat, however, haloperidol elevates DOPAC and HVA
but not 3-MT, at 1 h (145, 197, 202) or 2 h (191) afte
even very high doses of 3 mg/kg. Haloperidol-induce
incre the rat, however, haloperidol elevates DOPAC and HVA,
but not 3-MT, at 1 h (145, 197, 202) or 2 h (191) after
even very high doses of 3 mg/kg. Haloperidol-induced
increases in 3-MT are obtained in the rat only in com-
bina but not 3-MT, at 1 h (145, 197, 202) or 2 h (191) after co
even very high doses of 3 mg/kg. Haloperidol-induced (10
increases in 3-MT are obtained in the rat only in com-
ac
bination with MAO inhibition with clorgyline (19 even very high doses of 3 mg/kg. Haloperidol-induced
increases in 3-MT are obtained in the rat only in com-
bination with MAO inhibition with clorgyline (191),
nialamide (41), or pargyline (102, 160). When sacrifice is
at increases in 3-MT are obtained in the rat only in combination with MAO inhibition with clorgyline (191), nialamide (41), or pargyline (102, 160). When sacrifice is at 8 to 16 min postadministration, however, haloperidol do bination with MAO inhibition with clorgyline (191),
nialamide (41), or pargyline (102, 160). When sacrifice is
at 8 to 16 min postadministration, however, haloperidol
does increase rat striatal 3-MT, by about 60% (145, 202 nialamide (41), or pargyline (102, 160). When sacrifice is
at 8 to 16 min postadministration, however, haloperidol
does increase rat striatal 3-MT, by about 60% (145, 202).
Similarly, only small and transient increases of at 8 to 16 min postadministration, however, haloperidol
does increase rat striatal 3-MT, by about 60% (145, 202).
Similarly, only small and transient increases of DA re-
lease from rat striatum have been measured with stri does increase rat striatal 3-MT, by about 60% (145, 202). tet:
Similarly, only small and transient increases of DA re-
lease from rat striatum have been measured with striatal CG
dialysis (106, 227) and push-pull perfusion Similarly, only small and transient increases of DA re-
lease from rat striatum have been measured with striatal C
dialysis (106, 227) and push-pull perfusion (149) after ph
haloperidol. Because striatal dopamine release i lease from rat striatum have been measured with striatal C
dialysis (106, 227) and push-pull perfusion (149) after
haloperidol. Because striatal dopamine release is only the
transiently increased after haloperidol treatmen dialysis (106, 227) and push-pull perfusion (149) after
haloperidol. Because striatal dopamine release is only
transiently increased after haloperidol treatment, it is
likely that an early induction of depolarization block haloperidol. Because striatal dopamine release is only transiently increased after haloperidol treatment, it is likely that an early induction of depolarization block of dopamine neurons by this potent neuroleptic (76) pre transiently increased after haloperidol treatment, it is morph
likely that an early induction of depolarization block of dopan
dopamine neurons by this potent neuroleptic (76) pre-
vents subsequent dopamine release. This i likely that an early induction of depolarization block of dopamine neurons by this potent neuroleptic (76) prevents subsequent dopamine release. This is consistent rawith the ability of the MAO inhibition technique to show dopamine neurons by this potent neuroleptic (76) prevents subsequent dopamine release. This is consistent with the ability of the MAO inhibition technique to show an increase in 3-MT, since the early increase in release wo vents subsequent dopamine release. This is consistent rat
with the ability of the MAO inhibition technique to show by (
an increase in 3-MT, since the early increase in release to t
would contribute to the accumulated pool with the ability of the MAO inhibition technique to show
an increase in 3-MT, since the early increase in release
would contribute to the accumulated pool of 3-MT. Thus,
rather than invalidating the usefulness of 3-MT as a an increase in 3-MT, since the early increase in release would contribute to the accumulated pool of 3-MT. Thus, rather than invalidating the usefulness of 3-MT as an index of dopamine release, these data reveal a species would contribute to the accumulated pool of $3\text{-}MT$. Thus,
rather than invalidating the usefulness of $3\text{-}MT$ as an
index of dopamine release, these data reveal a species
difference in the actions of haloperidol on rat index of dopamine release, these data reveal a species
difference in the actions of haloperidol on rat striatal
dopamine release.
D. DA Autoreceptor Agonists
1. Pharmacology. When administered in doses high 1. The actions of haloperidol on rat striatal act

pamine release. The release.
 PA Autoreceptor Agonists

1. *Pharmacology*. When administered in doses high (14

pough to stimulate postsynaptic D-2 receptors in the 2

dopamine release. The community of the CD of the CD.

D. DA Autoreceptor Agonists

1. Pharmacology. When administered in doses high (1.

enough to stimulate postsynaptic D-2 receptors in the nucleus accumbens and caudate-p nucleus accumbent agents and caudate-putament alones high and caudate-putamen, full dopamine agents accumbens and caudate-putamen, full dopamine agents such as apomorphine increase locomotor behav-D. DA Autoreceptor Agonists
1. Pharmacology. When administered in doses his
enough to stimulate postsynaptic $D-2$ receptors in t
nucleus accumbens and caudate-putamen, full dopami
agonists such as apomorphine increase lo 1. Pharmacology. When administered in doses high
enough to stimulate postsynaptic D-2 receptors in the
nucleus accumbens and caudate-putamen, full dopamine
agonists such as apomorphine increase locomotor behav-
ior in rats enough to stimulate postsynaptic D-2 receptors in the
nucleus accumbens and caudate-putamen, full dopamine
agonists such as apomorphine increase locomotor behav-
ior in rats (52, 150). However, lower doses of dopamine
agon nucleus accumbens and caudate-putamen, full dopamine
agonists such as apomorphine increase locomotor behav-
ior in rats (52, 150). However, lower doses of dopamine
agonists and administration of dopamine autoreceptor
agoni agonists such as a
pomorphine increase locomotor behavior in rats $(52, 150)$. However, lower doses of dopamine
agonists and administration of dopamine autoreceptor
agonists (partial agonists) decrease locomotor behavior
 agonists such as apomorphine increase locomotor behav-

ior in rats $(52, 150)$. However, lower doses of dopamine

agonists and administration of dopamine autoreceptor

agonists (partial agonists) decrease locomotor behav agonists and administration of dopamine autoreceptor
agonists (partial agonists) decrease locomotor behavior
and striatal dopamine release (57, 83, 84, 177). The
locomotor suppression and decrease in dopamine release
occur agonists (partial agonists) decrease locomotor behavior delard striatal dopamine release $(57, 83, 84, 177)$. The malocomotor suppression and decrease in dopamine release 14 occur because of the selective activation of and striatal dopamine release (57, 83, 84, 177). The
locomotor suppression and decrease in dopamine release
occur because of the selective activation of presynapti
dopamine autoreceptors. This lowers the release an
synapti locomotor suppression and decrease in dopamine release
occur because of the selective activation of presynaptic
dopamine autoreceptors. This lowers the release an
synaptic concentrations of dopamine. The lessened stim
ulat dopamine autoreceptors. This lowers the release and
synaptic concentrations of dopamine. The lessened stim-
ulation of postsynaptic D-2 receptors attenuates loco-
motion. These low autoreceptor-selective doses of dopa-
min dopamine autoreceptors. This lowers the release and synaptic concentrations of dopamine. The lessened stim-
ulation of postsynaptic D-2 receptors attenuates loco-
ing motion. These low autoreceptor-selective doses of dopa synaptic concentrations of dopamine. The lessened stim-
ulation of postsynaptic D-2 receptors attenuates loco-
induction. These low autoreceptor-selective doses of dopa-
mine agonists also lower 3-MT levels in the rat and ulation of postsynaptic D-2 receptors attenue motion. These low autoreceptor-selective dose
mine agonists also lower 3-MT levels in the
mouse striatum and olfactory tubercle (4, 6, 8
accumulation of 3-MT after pargyline (1 otion. These low autoreceptor-selective doses of dopa-
ine agonists also lower 3-MT levels in the rat and
ouse striatum and olfactory tubercle (4, 6, 8) and the
cumulation of 3-MT after pargyline (102).
The subtle, and phy mine agonists also lower 3-MT levels in the rat and abduced mouse striatum and olfactory tubercle $(4, 6, 8)$ and the accumulation of 3-MT after pargyline (102) .
The subtle, and physiologically relevant, modulation of d

mouse striatum and olfactory tubercle $(4, 6, 8)$ and the accumulation of 3-MT after pargyline (102).
The subtle, and physiologically relevant, modulation of dopamine neuron activity by autoreceptors can be achieved with t accumulation of 3-MT after pargyline (102).
The subtle, and physiologically relevant, modulation
of dopamine neuron activity by autoreceptors can be
achieved with the D-2 receptor agonists apomorphine,
N-propylnorapomorphi The subtle, and physiologically relevant, modula
of dopamine neuron activity by autoreceptors can
achieved with the D-2 receptor agonists apomorph
N-propylnorapomorphine, bromocriptine, and lisur
and the partial D-2 agonis $1.3.4.4\alpha.5.10\beta$ -hexahydro-4-propyl-2H-[1]benzopyrano achieved with the D-2 receptor agonists apomorphine,
N-propylnorapomorphine, bromocriptine, and lisuride,
and the partial D-2 agonists CGS 15855A and $(+)$ -trans-
1,3,4,4 α ,5,10 β -hexahydro-4-propyl-2H-[1]benzopyrano
[N-propylnorapomorphine, bromocriptine, and lisuride,
and the partial D-2 agonists CGS 15855A and $(+)$ -trans-
1,3,4,4 α ,5,10 β -hexahydro-4-propyl-2H-[1]benzopyrano
[3,4-b]pyridin-7-ol (CGS 15873) (4, 8, 72) which have and the partial D-2 agonists CGS 15855A and $(+)$ -trans-
1,3,4,4 α ,5,10 β -hexahydro-4-propyl-2H-[1]benzopyrano
[3,4-b]pyridin-7-ol (CGS 15873) (4, 8, 72) which have at
least a 5-fold autoreceptor selectivity (93). Stim $1,3,4,4\alpha,5,10\beta$ -hexahydro-4-propyl-2H-[1]benzopyrano
[3,4-b]pyridin-7-ol (CGS 15873) (4, 8, 72) which have at sin
least a 5-fold autoreceptor selectivity (93). Stimulation eth
of the dopamine autoreceptor attenuates do $[3,4-b]$ pyridin-7-ol (CGS 15873) (4, 8, 72) which have
least a 5-fold autoreceptor selectivity (93). Stimulat
of the dopamine autoreceptor attenuates dopamine s
thesis (103), turnover (41, 57), nigrostriatal cell fir
(1), least a 5-fold autoreceptor selectivity (93). Stimulation
of the dopamine autoreceptor attenuates dopamine syn-
thesis (103), turnover (41, 57), nigrostriatal cell firing
(1), and the depolarization-evoked release of triti of the dopamine autoreceptor attenuates dopamine synthesis (103), turnover (41, 57), nigrostriatal cell firing (1), and the depolarization-evoked release of tritium-
labeled dopamine from striatal slices (114, 115, 173, 23

systemic apomorphine administration decreases by up to 4 ALTAR
systemic apomorphine administration decreases by up to
100% the release of dopamine in the striatum. These
autoreceptor-mediated decreases in dopamine release are ALTAR
systemic apomorphine administration decreases by up to
100% the release of dopamine in the striatum. These
autoreceptor-mediated decreases in dopamine release are
corroborated by 3-MT measurements. Apomorphine systemic apomorphine administration decreases by up to 100% the release of dopamine in the striatum. These autoreceptor-mediated decreases in dopamine release are corroborated by 3-MT measurements. Apomorphine (101), lisur systemic apomorphine administration decreases by up to 100% the release of dopamine in the striatum. These autoreceptor-mediated decreases in dopamine release are corroborated by 3-MT measurements. Apomorphine (101), lisur 100% the release of dopamine in the striatum. These
autoreceptor-mediated decreases in dopamine release are
corroborated by 3-MT measurements. Apomorphine
(101), lisuride, and bromocriptine (191) decrease 3-MT
accumulation autoreceptor-mediated decreases in dopamine release are
corroborated by 3-MT measurements. Apomorphine
(101), lisuride, and bromocriptine (191) decrease 3-MT
accumulation after pargyline. Apomorphine also lowers
3-MT level (101), lisuride, and bromocriptine (191) decrease 3-MT accumulation after pargyline. Apomorphine also lowers 3-MT levels of otherwise untreated rats (4, 53, 191, 202), rabbits (173), and mice (8, 33). Suppressions of stri (101), lisuride, and bromocriptine (191) decreaccumulation after pargyline. Apomorphine al 3-MT levels of otherwise untreated rats $(4, 53,$ rabbits (173), and mice $(8, 33)$. Suppressions $(3-MT$ following dipropyl-2-amino accumulation after pargyline. Apomorphine also lowers 3-MT levels of otherwise untreated rats $(4, 53, 191, 202)$, rabbits (173), and mice $(8, 33)$. Suppressions of striatal 3-MT following dipropyl-2-amino-6,7-dihydroxy-1 3-MT levels of otherwise untreated rats (4, 53, 191, 202),
rabbits (173), and mice (8, 33). Suppressions of striatal
3-MT following dipropyl-2-amino-6,7-dihydroxy-1,2,3,4-
tetrahydronaphthalene (ADTN), piribedil, ergocorni rabbits (173), and mice (8, 33). Suppressions
3-MT following dipropyl-2-amino-6,7-dihydro
tetrahydronaphthalene (ADTN), piribedil, e:
(191), LY 171555, CGS 15855A, the (-)-enai
CGS 15855 (CGS 16314A), (+)-N,n-propyl-3
phen 3-MT following dipropyl-2-amino-6,7-dihydroxy
tetrahydronaphthalene (ADTN), piribedil, erg(191), LY 171555, CGS 15855A, the (-)-enanti
CGS 15855 (CGS 16314A), (+)-N,n-propyl-3-(h
phenyl)piperidine [(+)-3-PPP] 6,7-dihydroxy tetrahydronaphthalene (ADTN), piribedil, erg
(191), LY 171555, CGS 15855A, the (-)-enant
CGS 15855 (CGS 16314A), (+)-N,n-propyl-3-(
phenyl)piperidine [(+)-3-PPP] 6,7-dihydroxy
thylaminotetralin (TL-99), and (-)N,n-propy
mo (191), LY 171555, CGS 15855A, the $(-)$ -enantiomer of CGS 15855 (CGS 16314A), $(+)$ -N,n-propyl-3-(hydroxy-phenyl)piperidine $[(+)$ -3-PPP] 6,7-dihydroxy-2-dimethylaminotetralin (TL-99), and $(-)N$,n-propylnorapo-morphine (8, 3 CGS 15855 (CGS 16314A), $(+)$ -N,n-p
phenyl)piperidine $[(+)$ -3-PPP] 6,7-
thylaminotetralin (TL-99), and $(-)$ l
morphine (8, 33) are consistent with t
dopamine release by these compounds
Basal and pargyline-accumulated lev enyl)piperidine $[(+)-3-PPP]$ 6,7-dihydroxy-2-dime-
ylaminotetralin (TL-99), and $(-)N,n$ -propylnorapo-
orphine (8, 33) are consistent with the suppression of
pamine release by these compounds.
Basal and pargyline-accumulated l

thylaminotetralin (TL-99), and $(-)N,n$ -propylnorapo-
morphine $(8, 33)$ are consistent with the suppression of
dopamine release by these compounds.
Basal and pargyline-accumulated levels of 3-MT in the
rat frontal cortex a morphine (8, 33) are consistent with the suppression of dopamine release by these compounds.
Basal and pargyline-accumulated levels of 3-MT in the rat frontal cortex and cingulate cortex are also lowered by CGS 15855A or a Basal and pargyline-accumulated levels of 3-MT in the
rat frontal cortex and cingulate cortex are also lowered
by CGS 15855A or apomorphine (9). This is in contrast
to the inability of cortical dopamine autoreceptors to
di rat frontal cortex and cingulate cortex are also lowered
by CGS 15855A or apomorphine (9). This is in contrast
to the inability of cortical dopamine autoreceptors to
directly modulate neocortical dopamine synthesis or me-
 by CGS 15855A or apomorphine (9). This is in contrast
to the inability of cortical dopamine autoreceptors to
directly modulate neocortical dopamine synthesis or me-
tabolism (20, 21), although DA agonists have been pos-
tu to the inability of cortical dopamine autoreceptors to directly modulate neocortical dopamine synthesis or metabolism (20, 21), although DA agonists have been postulated to indirectly modulate these aspects of dopamine act directly modulate neocortical dopamine synthesis or metabolism (20, 21), although DA agonists have been postulated to indirectly modulate these aspects of dopamine activity through changes in dopamine release (69, 204). Th tabolism (20, 21), although DA agonists have been pos-
tulated to indirectly modulate these aspects of dopamine
activity through changes in dopamine release (69, 204).
That dopamine autoreceptor modulation of dopamine
rele tulated to indirectly modulate these aspects of dopamine activity through changes in dopamine release (69, 204).
That dopamine autoreceptor modulation of dopamine release is present in neocortical areas is also supported b activity through of
That dopamine
release is present
by in vitro studio
(143, 144, 179).
2. Tolerance sti **2. Tolerance studies are administration** of dopenine
 2. Tolerance studies. Repeated administration for 2 h
 2. Tolerance studies. Repeated administration for 2 h
 2. Tolerance studies. Repeated administration for 2

morphine (8, 33) are consistent with the suppression of copamine release by these compounds.

Basal and pargyline-accumulated levels of 3-MT in the rat frontal cortex and cingulate cortex are also lowered by CGS 158556 or release is present in neocortical areas is also supported
by in vitro studies of the frontal and piriform cortices
(143, 144, 179).
2. Tolerance studies. Repeated administration for 2 h
(8) or constant delivery for 2 days by in vitro studies of the frontal and piriform cortices

(143, 144, 179).

2. Tolerance studies. Repeated administration for 2 h

(8) or constant delivery for 2 days (4) of CGS 15855A or

apomorphine lowers striatal and (143, 144, 179).

2. Tolerance studies. Repeated administration for 2 1

(8) or constant delivery for 2 days (4) of CGS 15855A of

apomorphine lowers striated and olfactory tubercle 3-MT

concentrations. After 14 days of 2. Tolerance studies. Repeated administration for 2 h (8) or constant delivery for 2 days (4) of CGS 15855A or apomorphine lowers striatal and olfactory tubercle 3-MT concentrations. After 14 days of administration, howeve (8) or constant delivery for 2 days (4) of CGS 15855A or
apomorphine lowers striatal and olfactory tubercle 3-MT
concentrations. After 14 days of administration, how-
ever, 3-MT is no longer suppressed by sustained agonis apomorphine lowers striatal and olfactory tubercle 3-MT
concentrations. After 14 days of administration, how-
ever, 3-MT is no longer suppressed by sustained agonist
delivery via Alzet minipumps of daily doses that proved
 concentrations. After 14 days of administration, how-
ever, 3-MT is no longer suppressed by sustained agonist
delivery via Alzet minipumps of daily doses that proved
maximally effective at 2 days. In addition, tolerance af ever, 3-MT is no longer suppressed by sustained agonist
delivery via Alzet minipumps of daily doses that proved
maximally effective at 2 days. In addition, tolerance after
14 days to the release-suppressing properties exte maximally effective at 2 days. In addition, tolerance after 14 days to the release-suppressing properties extends to the inability of large, acute injections of either agonist to lower $3-MT$, even with the contribution of maximally effective at 2 days. In addition, toleran
14 days to the release-suppressing properties ext
the inability of large, acute injections of either
to lower 3-MT, even with the contribution of the
delivered drug (4). 14 days to the release-suppressing properties extends to
the inability of large, acute injections of either agonist
to lower 3-MT, even with the contribution of the pump-
delivered drug (4). Tolerance to the synthesis-supp the inability of large, acute injections of either agonist
to lower 3-MT, even with the contribution of the pump-
delivered drug (4). Tolerance to the synthesis-suppress-
ing (16), firing rate-suppressing (73), and antipsy to lower 3-MT, even with the contribute delivered drug (4). Tolerance to the ing (16), firing rate-suppressing (73) (181, 182) properties of apomorphine about 2 days of chronic administration. ing (16), firing rate
(181, 182) propertia
about 2 days of chrones
E. CNS Stimulants
A wide variety of A wide variety of apomorphine also occurs after that also intervalse out 2 days of chronic administration.

CNS Stimulants

A wide variety of central nervous system (CNS) stim-

ants appear to act via increasing DA release

ulants appear to act via increasing DA release and/or
inhibiting DA uptake. In the case of amphetamine-type
inhibiting DA uptake. In the case of amphetamine-type E. CNS Stimulants
A wide variety of central nervous system (CNS) stim
ulants appear to act via increasing DA release and/o
inhibiting DA uptake. In the case of amphetamine-type
stimulants, inhibition of MAO may also contri E. CNS Stimulants
A wide variety of central nervous system (CNS) stim-
ulants appear to act via increasing DA release and/or
inhibiting DA uptake. In the case of amphetamine-type
stimulants, inhibition of MAO may also cont A wide variety of central nervous system (CNS) stimulants appear to act via increasing DA release and/or inhibiting DA uptake. In the case of amphetamine-type stimulants, inhibition of MAO may also contribute to their phar

1. Uptake blockers. The DA uptake blockers, nomifeninhibiting DA uptake. In the case of amphetami
stimulants, inhibition of MAO may also contri
their pharmacology.
1. Uptake blockers. The DA uptake blockers, n
sine, amfonelic acid, 1-{2-[bis(4-fluorophenyl)m
ethyl}-4-(3-ph etimulants, inhibition of MAO may also contribute to
their pharmacology.
1. Uptake blockers. The DA uptake blockers, nomifen-
sine, amfonelic acid, 1-{2-[bis(4-fluorophenyl)methoxy]
ethyl}-4-(3-phenylpropyl)piperazine(GBR their pharmacology.

1. Uptake blockers. The DA uptake blockers, nomifensine, amfonelic acid, 1-{2-[bis(4-fluorophenyl)methoxy]

ethyl}-4-(3-phenylpropyl)piperazine(GBR 12909), and

cocaine, have been shown to increase ext 1. Uptake blockers. The DA uptake blockers, nomifensine, amfonelic acid, $1-\{2-\text{bis}(4-\text{fluoropheny})\text{methony}}\$ ethyl}-4-(3-phenylpropyl)piperazine(GBR 12909), and cocaine, have been shown to increase extraneuronal DA, as assessed by sine, amfonelic acid, 1-{2-[bis(4-fluorophenyl)methoxy]
ethyl}-4-(3-phenylpropyl)piperazine(GBR 12909), and
cocaine, have been shown to increase extraneuronal DA,
as assessed by in vivo voltammetry (104), striatal dialysis ethyl}-4-(3-phenylpropyl)piperazine(GBR 12909), and
cocaine, have been shown to increase extraneuronal DA,
as assessed by in vivo voltammetry (104), striatal dialysis
(48), and steady-state 3-MT measurements (58, 145, 191, cocaine, have been shown to increase extraneuronal DA,
as assessed by in vivo voltammetry (104), striatal dialysis
(48), and steady-state 3-MT measurements (58, 145, 191,
202). The uptake blocker, benztropine, has also bee

PHARMACOLOGICAL REVIEWS

3-MT MEASUREMENTS AND DA RELEA:
tammetry (170) and striatal dialysis (48). However, in 2.
the one study of 3-MT steady-state levels, this compound com 3-MT MEASUREMENTS AND DA REL
tammetry (170) and striatal dialysis (48). However, in
the one study of 3-MT steady-state levels, this compound
was inactive. This finding is the one published discrep-3-MT MEASUREMENTS AND I
tammetry (170) and striatal dialysis (48). However,
the one study of 3-MT steady-state levels, this compou
was inactive. This finding is the one published discrep-
ancy for the relationship between tammetry (170) and striatal dialysis (48). However
the one study of 3-MT steady-state levels, this compo
was inactive. This finding is the one published disc
ancy for the relationship between basal 3-MT concentions and DA tammetry (170) and striatal dialysis (48). However, in
the one study of 3-MT steady-state levels, this compound
was inactive. This finding is the one published discrep-
ancy for the relationship between basal 3-MT concentr the one study of 3-MT steady-state levels, this compound combined was inactive. This finding is the one published discrep-
between ancy for the relationship between basal 3-MT concentra-
tions and DA release, and it clearl was inactive. This finding is the one published discrepancy for the relationship between basal 3-MT concentrations and DA release, and it clearly requires furthestudy. By monitoring 3-MT accumulation after MA
study. By mon tions and DA release, and it clearly requires further
study. By monitoring 3-MT accumulation after MAO
inhibition, desipramine was found to increase this proc-
ess in whole rat brain, as does cocaine (99). In the rabbit study. By monitoring 3-MT accumulation after MAO
inhibition, desipramine was found to increase this proc-
ess in whole rat brain, as does cocaine (99). In the rabbit
striatum, however, cocaine did not enhance 3-MT accu-
mu study. By monitoring 3-MT
inhibition, desipramine was i
ess in whole rat brain, as doe
striatum, however, cocaine d
mulation after MAOI (79).
The physiological importal hibition, desipramine was found to increase this proc-
in whole rat brain, as does cocaine (99). In the rabbit
riatum, however, cocaine did not enhance 3-MT accu-
ulation after MAOI (79).
The physiological importance of hi

ess in whole rat brain, as does cocaine (99). In the rabbit
striatum, however, cocaine did not enhance 3-MT accu-
mulation after MAOI (79).
The physiological importance of high affinity DA up-
take by dopaminergic nerve en striatum, however, cocaine did not enhance 3-MT accu-
mulation after MAOI (79).
The physiological importance of high affinity DA up-
take by dopaminergic nerve endings during normal syn-
ele-
aptic transmission has been a mulation after MAOI (79).
The physiological importance of high affinity DA up-
take by dopaminergic nerve endings during normal syn-
aptic transmission has been a controversial issue. High
affinity uptake has been demonstr The physiological importance of high affinity DA uptake by dopaminergic nerve endings during normal synaptic transmission has been a controversial issue. High affinity uptake has been demonstrated to limit the diffusive en take by dopaminergic nerve endings during normal synchtic transmission has been a controversial issue. High phenoment
affinity uptake has been demonstrated to limit the dif-
weight fusive entry of DA into striatal slices (affinity uptake has been demonstrated to limit the diffusive entry of DA into striatal slices (13, 169). Similarly, inhibition of uptake into brain slices by cocaine and nomifensine increases DA overflow as assessed by vol affinity uptake has been demonstrated to limit the dif-
fusive entry of DA into striatal slices (13, 169). Similarly, in
inhibition of uptake into brain slices by cocaine and me
nomifensine increases DA overflow as assesse fusive entry of DA into striatal slices (13, 169). Similarly, in
inhibition of uptake into brain slices by cocaine and me
nomifensine increases DA overflow as assessed by volaci
tammetry (104). In contrast, in vivo stimula inhibition of uptake into brain slices by cocaine are nomifensine increases DA overflow as assessed by vo
tammetry (104). In contrast, in vivo stimulation of the MFB, in the presence of DA uptake blockers, has been unable nomifensine increases DA overflow as assessed by vol-
tammetry (104). In contrast, in vivo stimulation of the
MFB, in the presence of DA uptake blockers, has been
tal studies to reveal any differences in DA clearance moniunable to reveal any differences in DA clearance moniunable to reveal any differences in DA clearance moni-
tored by voltammetry (60). Studies of DA metabolism in
rat striatal slices after inhibition of high affinity uptake
3
by either decreasing sodium concentrations in the by either decreasing sodium concentrations in the medium or by the addition of nomifensine have indicated that, while these slices do not accumulate DA, as compared to normal slices, the metabolism of the labeled DA rat striatal slices after inhibition of high affinity uptake 3-MT
by either decreasing sodium concentrations in the me-
dium or by the addition of nomifensine have indicated of elev
that, while these slices do not accumula by either decreasing sodium concentrations in the medium or by the addition of nomifensine have indicated that, while these slices do not accumulate DA, as compared to normal slices, the metabolism of the labeled DA to DOP that, while these slices do not accumulate DA, as compared to normal slices, the metabolism of the labeled DA to DOPAC and HVA is only minimally affected (164). that, while these slices do not accumulate DA, as compared to normal slices, the metabolism of the labeled DA to DOPAC and HVA is only minimally affected (164). The conclusions from these studies were that high affinity DA pared to normal slices, the metabolism of the labeled DA
to DOPAC and HVA is only minimally affected (164).
The conclusions from these studies were that high affin-
ity DA uptake is only a minor route of DA inactivation
an to DOPAC and HVA is only minimally affected (164). So
The conclusions from these studies were that high affin-
ity DA uptake is only a minor route of DA inactivation
and that the bulk of DA metabolism is secondary to glial ity DA uptake is only a minor route of DA inactivation
and that the bulk of DA metabolism is secondary to glial
uptake. In fact, studies of the diffusional distance of
released DA indicate that this is less than 100,000 nm and that the bulk of DA metabolism is secondary to glial uptake. In fact, studies of the diffusional distance of released DA indicate that this is less than 100,000 nm (60); however, this value is much greater than the dis uptake. In fact, studies of the diffusional distance of preleased DA indicate that this is less than 100,000 nm 3.
(60); however, this value is much greater than the distance of the synaptic cleft (20 to 30 nm; 140). In ad released DA indicate that this is less than 100,000 nm 3-M
(60); however, this value is much greater than the dis-
tance of the synaptic cleft (20 to 30 nm; 140). In addition, mis
this diffusional distance was unaffected b (60); however, this value is much greater than the dis-
tance of the synaptic cleft $(20 \text{ to } 30 \text{ nm}; 140)$. In addition, miss
this diffusional distance was unaffected by inhibition of Thigh affinity DA uptake, by MAO inh tance of the synaptic cleft $(20 \text{ to } 30 \text{ nm}; 140)$. In addition, in
this diffusional distance was unaffected by inhibition of
high affinity DA uptake, by MAO inhibition, and by
COMT inhibition (60) , again indicating th this diffusional distance was unaffected by inhibition of
high affinity DA uptake, by MAO inhibition, and by
COMT inhibition (60), again indicating that metabolism
of released DA is mainly secondary to glial uptake. This
c high affinity DA uptake, by MAO inhibition, and by COMT inhibition (60), again indicating that metabolism of released DA is mainly secondary to glial uptake. This conclusion would be compatible with the astrocytic sheets w DMT inhibition (60), again indicating that metabolism
released DA is mainly secondary to glial uptake. This
inclusion would be compatible with the astrocytic a
eets which surround synapses within the CNS (140).
The degree of released DA is mainly secondary to glial uptake. This tained
conclusion would be compatible with the astrocytic acute sheets which surround synapses within the CNS (140). site of
The degree of activity of a given dopam

conclusion would be compatible with the astrocytic accesses which surround synapses within the CNS (140). sit
The degree of activity of a given dopaminergic pathway
may also affect the net effect of drug treatments on DA (sheets which surround synapses within the CNS (140).
The degree of activity of a given dopaminergic pathway
may also affect the net effect of drug treatments on DA (
release. In a study of drug effects on DA release in the The degree of activity of a given dopaminergic pathway
may also affect the net effect of drug treatments on DA
release. In a study of drug effects on DA release in the
rat striatum (voltammetry) after either 1 s or 10 s of may also affect the net effect of drug treatments on DA (PCP) receptor demonstrate a stereospecific motor acti-
release. In a study of drug effects on DA release in the vation in rats which is accompanied by elevated DOPA release. In a study of drug effects on DA release in the rat striatum (voltammetry) after either 1 s or 10 s of 50-
Hz stimulation of the MFB, benztropine only potentiated
the 1-s and not the 10-s period of electrical stim rat striatum (voltammetry) after either 1 s or 10 s of 50-
Hz stimulation of the MFB, benztropine only potentiated picket 1-s and not the 10-s period of electrical stimulation In
(170, 171). These data clearly indicate tha Hz stimulation of the MFB, benztropine only potentiated projector is and not the 10-s period of electrical stimulation. In r (170, 171). These data clearly indicate that drug effects accuracy on DA release can be affected the 1-s and not the 10-s period of electrical stimulation In (170, 171). These data clearly indicate that drug effects accon DA release can be affected by the level of activity of PC dopaminergic neurons prior to drug admi (170, 171). These data clearly indicate that drug effects as on DA release can be affected by the level of activity of $\,$ F dopaminergic neurons prior to drug administration. In $\,$ n this regard, previous studies of s on DA release can be affected by the level of activity of dopaminergic neurons prior to drug administration. In this regard, previous studies of striatal synaptosomes had demonstrated that high affinity uptake of DA is inh dopaminergic neurons prior to drug administration. In n
this regard, previous studies of striatal synaptosomes had
demonstrated that high affinity uptake of DA is inhibited
under depolarizing conditions (86). These data su this regard, previous studies of striatal synaptosomes had
demonstrated that high affinity uptake of DA is inhibited
under depolarizing conditions (86). These data suggest
that under low levels of activity, high affinity D demonstrated that high affinity uptake of DA is inhibited cortica
under depolarizing conditions (86). These data suggest cate th
that under low levels of activity, high affinity DA uptake mesoco
is a significant process fo under depolarizi
that under low le
is a significant
that under high
may predominat

2. Precursor supply. Using the paradigm of MAOI in LEASE IN VIVO FROM NEURONS 179
2. Precursor supply. Using the paradigm of MAOI in
combination with L-DOPA administration, a correlation
between increased motor activity and both striatal and LEASE IN VIVO FROM NEURONS 179
2. Precursor supply. Using the paradigm of MAOI in
combination with L-DOPA administration, a correlation
between increased motor activity and both striatal and
nucleus accumbens 3-MT levels w 2. Precursor supply. Using the paradigm of MAOI in combination with L-DOPA administration, a correlation between increased motor activity and both striatal and nucleus accumbens 3-MT levels was noted (53). Increased 3-MT l 2. Precursor supply. Using the paradigm of MAOI
combination with L-DOPA administration, a correlatio
between increased motor activity and both striatal an
nucleus accumbens 3-MT levels was noted (53). I
creased 3-MT levels combination with L-DOPA administration, a correlation
between increased motor activity and both striatal and
nucleus accumbens 3-MT levels was noted (53). In-
creased 3-MT levels have also been noted in the brain-
stem and between increased motor activity and h
nucleus accumbens 3-MT levels was
creased 3-MT levels have also been not
stem and hypothalamus with the combi
and L-DOPA administration (23, 39).
Using brain dialysis, direct evidence ucleus accumbens 3-MT levels was noted (53). In-
eased 3-MT levels have also been noted in the brain-
em and hypothalamus with the combination of MAOI
d L-DOPA administration (23, 39).
Using brain dialysis, direct evidence creased 3-MT levels have also been noted in the brain-
stem and hypothalamus with the combination of MAOI
and L-DOPA administration (23, 39).
Using brain dialysis, direct evidence for increased DA
release has been obtained

tyrosine (58a). *3. DOPA administration (23, 39).*
 3. Daing brain dialysis, direct evidence for increased DA
 Dase has been obtained after precursor loading with
 3. DA releasers. The early studies of Braestrup (34)
 3. DA release

tammetry (104). In contrast, in vivo stimulation of the of these stimulants, independent of class, elevated stria-
MFB, in the presence of DA uptake blockers, has been tal steady-state 3-MT levels (58, 127, 145, 191, 201, The conclusions from these studies were that high affin-
ity DA uptake is only a minor route of DA inactivation
nous stimulant, phenethylamine, which appears to be
and that the bulk of DA metabolism is secondary to glial
 Using brain dialysis, direct evidence for increased DA
release has been obtained after precursor loading with
tyrosine (58a).
3. DA releasers. The early studies of Braestrup (34)
clearly indicated that amphetamine-like sti release has been obtained after precursor loading wit
tyrosine (58a).
3. DA releasers. The early studies of Braestrup (34
clearly indicated that amphetamine-like stimulants (am
phetamine, methamphetamine, and phenmetrazine tyrosine (58a).

3. DA releasers. The early studies of Braestrup (34)

clearly indicated that amphetamine-like stimulants (am-

phetamine, methamphetamine, and phenmetrazine)

were unique in that they decreased whole brai 3. DA releasers. The early studies of Braestrup (34)
clearly indicated that amphetamine-like stimulants (am-
phetamine, methamphetamine, and phenmetrazine)
were unique in that they decreased whole brain DOPAC
in the rat, clearly indicated that amphetamine-like stimulants (amphetamine, methamphetamine, and phenmetrazine)
were unique in that they decreased whole brain DOPAC
in the rat, while other stimulants increased this DA
metabolite (met phetamine, methamphetamine, and phenmetrazine)
were unique in that they decreased whole brain DOPAC
in the rat, while other stimulants increased this DA
metabolite (methylphenidate, nomifensine, amfonelic
acid, and piprado were unique in that they decreased whole brain DOPA
in the rat, while other stimulants increased this D.
metabolite (methylphenidate, nomifensine, amfoneli
acid, and pipradol). Subsequent studies indicated that a
of these in the rat, while other stimulants increased this DA
metabolite (methylphenidate, nomifensine, amfonelic
acid, and pipradol). Subsequent studies indicated that all
of these stimulants, independent of class, elevated striametabolite (methylphenidate, nomifensine, amfonelicacid, and pipradol). Subsequent studies indicated that all
of these stimulants, independent of class, elevated stria-
tal steady-state 3-MT levels (58, 127, 145, 191, 201, acid, and pipradol). Subsequent studies indicated that all
of these stimulants, independent of class, elevated stria-
tal steady-state 3-MT levels (58, 127, 145, 191, 201, 225)
and 3-MT accumulation after MAOI (77, 99). On of these stimulants, independent of class, elevated striatal steady-state 3-MT levels (58, 127, 145, 191, 201, 225) and 3-MT accumulation after MAOI (77, 99). One negative study for the effects of methylphenidate on stria and 3-MT accumulation after MAOI (77, 99). One negand 3-MT accumulation after MAOI (77, 99). One n
ative study for the effects of methylphenidate on stria
3-MT was reported (191). The elevated striatal 3-1
levels were also shown to correlate with the appeara
of elevated C ative study for the effects of methylphenidate on striatal 3-MT was reported (191). The elevated striatal 3-MT levels were also shown to correlate with the appearance of elevated CSF DA levels after amphetamine administrat 3-MT was reported (191). The elevated striatal 3-M
levels were also shown to correlate with the appearance of elevated CSF DA levels after amphetamine adminition in the rat (47). Amphetamine treatment has bee
shown to inc in the rat, while other stimulants increased this DA metabolite (methylphenidate, nomifensine, amfonelic acid, and pipradol). Subsequent studies indicated that all of these stimulants, independent of class, elevated stria of elevated CSF DA levels after amphetamine admin
tration in the rat (47). Amphetamine treatment has be
shown to increase DA release collected in striatal dia
sates by a number of laboratories (90, 215, 229) and
elevate 3tration in the rat (47). Amphetamine treatment has been
shown to increase DA release collected in striatal dialy-
sates by a number of laboratories (90, 215, 229) and to
elevate 3-MT in striatal dialysates (215). The endog shown to increase DA release collected in striatal dialy-
sates by a number of laboratories (90, 215, 229) and to
elevate 3-MT in striatal dialysates (215). The endoge-
nous stimulant, phenethylamine, which appears to be
c sates by a number of laboratories (90, 215, 229) and to
elevate 3-MT in striatal dialysates (215). The endoge-
nous stimulant, phenethylamine, which appears to be
contained within the rat nigrostriatal dopaminergic
pathway elevate 3-MT in striatal dialysates (215). The endo
nous stimulant, phenethylamine, which appears to
contained within the rat nigrostriatal dopamine
pathway (95), also releases DA, as indicated by eleva
3-MT levels (127). mous stimulant, phenethylamine, which appears to contained within the rat nigrostriatal dopaminergiathway (95), also releases DA, as indicated by elevation 3-MT levels (127). The possible modulatory or cotrans-mitter role contained within the rat nigre-
pathway (95), also releases DA, a
3-MT levels (127). The possible
mitter role of this trace amine is
mission warrants further study.
The site of action of these CNS mitter role of this trace amine in dopaminergic transmission warrants further study.
The site of action of these CNS stimulants is presum-

3-MT levels (127). The possible modulatory or cotransmitter role of this trace amine in dopaminergic transmission warrants further study.
The site of action of these CNS stimulants is presumably at the dopaminergic nerve e mitter role of this trace amine in dopaminergic transmission warrants further study.
The site of action of these CNS stimulants is presumably at the dopaminergic nerve ending. In the case of amphetamine, the DOPAC lowering mission warrants further study.
The site of action of these CNS stimulants is presumably at the dopaminergic nerve ending. In the case of amphetamine, the DOPAC lowering effect is also obtained in DA nerve endings in the r The site of action of these CNS stimulants is presumably at the dopaminergic nerve ending. In the case of amphetamine, the DOPAC lowering effect is also obtained in DA nerve endings in the rat striatum after an acute hemit ably at the dopaminergic nerve
amphetamine, the DOPAC lowe
tained in DA nerve endings in th
acute hemitransection, demonstratie of action for this drug (34).
4. PCP receptor agonists. Agonis approximation. the DOPAC lowering effect is also obined in DA nerve endings in the rat striatum after an ute hemitransection, demonstrating the presynaptic e of action for this drug (34).
4. *PCP receptor agonists*. Agonis % acute hemitransection, demonstrating the presynaptic
site of action for this drug (34) .
4. PCP receptor agonists. Agonists of the phencyclidine

acute hemitransection, demonstrating the presynaptic
site of action for this drug (34).
4. PCP receptor agonists. Agonists of the phencyclidine
(PCP) receptor demonstrate a stereospecific motor acti-
vation in rats which i site of action for this drug (34).
4. PCP receptor agonists. Agonists of the phencyclidine
(PCP) receptor demonstrate a stereospecific motor acti-
vation in rats which is accompanied by elevated DOPAC
and HVA in mesolimbic 4. PCP receptor agonists. Agonists of the phencyclidine (PCP) receptor demonstrate a stereospecific motor activation in rats which is accompanied by elevated DOPAC and HVA in mesolimbic and mesocortical dopaminergic projec (PCP) receptor demonstrate a stereospecific motor activation in rats which is accompanied by elevated DOPAC and HVA in mesolimbic and mesocortical dopaminergic projections, but not in the nigrostriatal pathway (31, 56). In vation in rats which is accompanied by elevated DOPAC
and HVA in mesolimbic and mesocortical dopaminergic
projections, but not in the nigrostriatal pathway (31, 56).
In recent studies of steady-state 3-MT levels and 3-MT
a and HVA in mesolimbic and mesocortical dopaminergi
projections, but not in the nigrostriatal pathway (31, 56)
In recent studies of steady-state 3-MT levels and 3-MT
accumulation after pargyline, the PCP receptor agonists
P methyl-5H-dibenzo $[a,d]$ cyclohepten-5,10-imine (MK In recent studies of steady-state 3-MT levels and 3-M
accumulation after pargyline, the PCP receptor agonist
PCP, dexoxadrol, ketamine, and $10,11$ -dihydro-
methyl-5H-dibenzo[a,d]cyclohepten-5,10-imine (M
801), were found accumulation after pargyline, the PCP receptor agonists
PCP, dexoxadrol, ketamine, and $10,11$ -dihydro-5
methyl-5H-dibenzo[a,d]cyclohepten-5,10-imine (MF
801), were found to increase these parameters in meso
cortical dopa PCP, dexoxadrol, ketamine, and 10,11-dihydro-5-
methyl-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK
801), were found to increase these parameters in meso-
cortical dopaminergic pathways (152). These data indi-
cate that PCP methyl-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK
801), were found to increase these parameters in meso-
cortical dopaminergic pathways (152). These data indi-
cate that PCP receptor stimulation leads to activation of
meso 801), were found to increase these parameters in meso-
cortical dopaminergic pathways (152). These data indi-
cate that PCP receptor stimulation leads to activation of
mesocortical and mesolimbic DA pathways (66, 85) and
a cortical dopaminergic pathways (152). These data indicate that PCP receptor stimulation leads to activation of mesocortical and mesolimbic DA pathways (66, 85) and are consistent with the early reports of increased $[^{14}$ cate that PCP receptor stimulation leads to activation of
mesocortical and mesolimbic DA pathways (66, 85) and
are consistent with the early reports of increased [¹⁴C]3-
MT formation from [¹⁴C]tyrosine in whole mouse b

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

180 **WOOD AND ALTAR**
WOOD AND ALTAR were observed after PCP which correlated with decreased action of intitiated DA release as assessed by in vivo voltammetry culline and b wood ANI
were observed after PCP which correlated with decreased
striatal DA release as assessed by in vivo voltammetry
(88). (88). Fre observed after PCP which correlated with decreased riatal DA release as assessed by in vivo voltammetry as.

5. Lithium. Acute lithium has been reported to de-

sase mouse whole brain 3-MT (135), while chronic

striatal DA release as assessed by in vivo voltammetry c

(88).

5. Lithium. Acute lithium has been reported to de-

crease mouse whole brain 3-MT (135), while chronic d

treatment for 11 days increases rat striatal 3-MT (88).
5. Lithium. Acute lithium has been reported to de-
crease mouse whole brain 3-MT (135), while chronic
treatment for 11 days increases rat striatal 3-MT levels
121). Similarly, 20 days of lithium treatment increase
r 5. Lithium. Acute lithium has been reported to decrease mouse whole brain $3-MT$ (135), while chronic treatment for 11 days increases rat striatal $3-MT$ levels (121). Similarly, 20 days of lithium treatment increase rat st crease mouse whole brain 3-MT (135), while chronic
treatment for 11 days increases rat striatal 3-MT levels
(121). Similarly, 20 days of lithium treatment increase
rat striatal and nucleus accumbens DOPAC levels (61).
Thes treatment for 11 days increases rat striatal 3-MT
(121). Similarly, 20 days of lithium treatment in
rat striatal and nucleus accumbens DOPAC level:
These data indicate that chronic lithium treatme
sults in both increased D Fract striatal and nucle

These data indicate t

sults in both increase

F. CNS Depressants

Alcohol decreases

hese data indicate that chronic lithium treatment re-

lts in both increased DA synthesis and release.

CNS Depressants

Alcohol decreases the accumulation of 3-MT after

rgyline treatment (116). Stable adenosine analogs h sults in both increased DA synthesis and release.
 $\begin{array}{r} \text{e} \text{x} \\ \text{f} \end{array}$
 $\begin{array}{r} \text{F. CNS} \end{array}$ Depressants

Alcohol decreases the accumulation of 3-MT after

pargyline treatment (116). Stable adenosine analogs h F. CNS Depressants
Alcohol decreases the accumulation of 3-MT a
pargyline treatment (116). Stable adenosine analogs h
also been shown to decrease the postmortem accum
tion of striatal 3-MT in decapitated rats (133), to F . CNS Depressants
Alcohol decreases the accumulation of 3-MT after
pargyline treatment (116). Stable adenosine analogs have
also been shown to decrease the postmortem accumula-
tion of striatal 3-MT in decapitated rats Alcohol decreases the accumulation of $3-MT$ after
pargyline treatment (116). Stable adenosine analogs have
also been shown to decrease the postmortem accumula-
tion of striatal $3-MT$ in decapitated rats (133), to de-
crea pargyline treatment (116). Stable adenosine analogs have also been shown to decrease the postmortem accumulation of striatal 3-MT in decapitated rats (133), to decrease basal striatal 3-MT levels (214), and to antagoniz pa also been shown to decrease the postmortem accumulation of striatal 3-MT in decapitated rats (133), to de-
crease basal striatal 3-MT levels (214), and to antagonize (19
pargyline-dependent 3-MT accumulation in the rat st tion of striatal 3-MT in decapitated rats (133), to decrease basal striatal 3-MT levels (214), and to antagonize pargyline-dependent 3-MT accumulation in the rat striatum (214). The use of selected adenosine agonists and a crease basal striata
pargyline-depender
tum (214). The us
antagonists has streceptor mediated.
C. CABAcraice.

G. *GABAergics*

tagonists has suggested that these actions are A-1 GI
ceptor mediated. (3)
 $GABAergic$ modulation of the nigrostriatal pathway is
tremely complex in that GABA-A receptors have been $\frac{1}{100}$ receptor mediated. $\begin{array}{cc} (35 & (35) \\ (36) & (38) \\ (37) & (38) \\ (38) & (39) \\ (39) & (39) \\ (30) & (39) \\ (30) & (39) \\ (30) & (30) \\ (31) & (32) \\ (32) & (33) \\ (34) & (35) \\ (36) & (37) \\ (38) & (39) \\ (39) & (30) \\ (30) & (31) \\ (31) & (32) \\ (32) & (33) \\ (34) & (35) \\ (37) & (39) \\ (30) &$ G. GABAergics

GABAergic modulation of the nigrostriatal pathway is

extremely complex in that GABA-A receptors have been

demonstrated on dopaminergic nerve endings within the

striatum (40, 45), on dopaminergic cell bod GABAergics

GABAergic modulation of the nigrostriatal pathway is

extremely complex in that GABA-A receptors have been

demonstrated on dopaminergic nerve endings within the

striatum (40, 45), on dopaminergic cell bodies GABAergic modulation of the nigrostriatal pathway is
extremely complex in that GABA-A receptors have been
demonstrated on dopaminergic nerve endings within the
striatum (40, 45), on dopaminergic cell bodies in the
substant extremely complex in that GABA-A receptors have been
demonstrated on dopaminergic nerve endings within the
striatum (40, 45), on dopaminergic cell bodies in the
substantia nigra (109), and on nerve endings of afferents
to demonstrated on dopaminergic nerve endings within the striatum $(40, 45)$, on dopaminergic cell bodies in the substantia nigra (109) , and on nerve endings of afferents to the substantia nigra (153) . GABA-B receptors a (32). bstantia nigra (109), and on nerve endings of afferents
the substantia nigra (153). GABA-B receptors are also
esent within both the striatum and substantia nigra
2).
1. GABA-A agonists. The GABA-A agonists muscimol,
jic

to the substantia nigra (153). GABA-B recept
present within both the striatum and subst.
(32).
1. GABA-A agonists. The GABA-A agonists
kojic amine, 4,5,6,7-tetrahydroisoxazolo[5,4-c
ol (THIP), and progabide all dose depe present within both the striatum and substantia nigra (32).

1. GABA-A agonists. The GABA-A agonists muscimol,

kojic amine, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-

ol (THIP), and progabide all dose dependently decr (32).

1. GABA-A agonists. The GABA-A agonists muscimol, both

is a strict and progabide all dose dependently decrease

the levels of striatal 3-MT (205). The depressant action

of progabide on striatal DA release has als 1. $GABA-A$ agonists. The GABA-A agonists muscimol
kojic amine, $4,5,6,7$ -tetrahydroisoxazolo $[5,4-c]$ pyridin-3
ol (THIP), and progabide all dose dependently decreas
the levels of striatal 3-MT (205). The depressant action
of kojic amine, $4,5,6,7$ -tetrahydroisoxazolo $[5,4-c]$ pyridin-3-
ol (THIP), and progabide all dose dependently decrease
the levels of striatal 3-MT (205). The depressant action
of progabide on striatal DA release has also bee ol (THIP), and progabide all dose dependently decrease
the levels of striatal 3-MT (205). The depressant action
of progabide on striatal DA release has also been dem-
onstrated directly with push-pull perfusion studies in the levels of striatal 3-MT (205). The depressant action
of progabide on striatal DA release has also been dem
onstrated directly with push-pull perfusion studies in the
cat caudate (161). The effects of these agents on st of progabide on striatal DA release has also been demonstrated directly with push-pull perfusion studies in the treat
cat caudate (161). The effects of these agents on striatal MT \cdot
3-MT levels were antagonized by the onstrated directly with push-pull perfusion studies in the cat caudate (161). The effects of these agents on striatal 3-MT levels were antagonized by the GABA antagonist, picrotoxin, and lasted longer than 3 h (205). GABAcat caudate (161). The effects of these agents on striatal MT were found not to express tolerance (212).

3-MT levels were antagonized by the GABA antagonist, The benzodiazepines clonazepam and nitrazepam, like

picrotoxi 3-MT levels were antagonized by the GABA antagonist,
picrotoxin, and lasted longer than 3 h (205). GABA-A dia
effects on HVA are more complex. While muscimol, the
THIP, and kojic amine elevate DOPAC (205), THIP and of
mus picrotoxin, and lasted longer than 3 h (205). GABA-A
effects on HVA are more complex. While muscimol,
THIP, and kojic amine elevate DOPAC (205), THIP and
muscimol increase striatal HVA, while kojic amine and
progabide decr effects on HVA are more complex. While muscimol,
THIP, and kojic amine elevate DOPAC (205), THIP and
muscimol increase striatal HVA, while kojic amine and
progabide decrease HVA (205). The only consistent
changes in DA me muscimol increase striatal HVA, while kojic amine and
progabide decrease HVA (205). The only consistent
changes in DA metabolites with these inhibitory agents
were the decreases in 3-MT levels.
Using the paradigm of parent uscimol increase striatal HVA, while kojic amine and
ogabide decrease HVA (205). The only consistent
anges in DA metabolites with these inhibitory agents
are
the decreases in 3-MT levels.
Using the paradigm of parenteral i progabide decrease HVA (205). The only consistent
changes in DA metabolites with these inhibitory agents alt
were the decreases in 3-MT levels. act
lost using the paradigm of parenteral injections in acutely
hemitransected

changes in DA metabolites with these inhibitory agents activate were the decreases in 3-MT levels. Lymphered actively actively bend to the striatum, both THIP and kojic amine were shown to PAC act on GABA-A receptors withi were the decreases in 3-MT levels. acts and Using the paradigm of parenteral injections in acutely ben
hemitransected rats and using local drug injections into box
the striatum, both THIP and kojic amine were shown to PAO
 Using the paradigm of parenteral injections in acutely
hemitransected rats and using local drug injections into
the striatum, both THIP and kojic amine were shown to
exact on GABA-A receptors within the striatum (205). In
 hemitransected rats and using local drug injections in
the striatum, both THIP and kojic amine were shown t
act on GABA-A receptors within the striatum (205). I
marked contrast, muscimol decreases striatal 3-MT i
hemitrans the striatum, both THIP and kojic amine were shown to PAC
act on GABA-A receptors within the striatum (205). In Recen
marked contrast, muscimol decreases striatal 3-MT in increa
hemitransected rats but increases 3-MT after act on GABA-A receptors within the striatum (205). In Recent
marked contrast, muscimol decreases striatal 3-MT in increase
hemitransected rats but increases 3-MT after local injec-
tions into the striatum (205). This effec marked contrast, muscimol decreases striatal 3-MT in
hemitransected rats but increases 3-MT after local injec-
tions into the striatum (205). This effect in the striatum
agrees with studies of the effects of muscimol on DA hemitransected rats but increases 3-MT after local injections into the striatum (205). This effect in the striatum agrees with studies of the effects of muscimol on DA release in striatal slices in vitro (176a), but its po tions into the striatum (205) . This effect in the striatum agrees with studies of the effects of muscimol on DA crelease in striatal slices in vitro $(176a)$, but its potential Γ role in vivo is unknown since this dr

striatal DA release as assessed by in vivo voltammetry culline and by prior kainate lesions of striatal neurons (88).

(205). In acutely hemitransected rats, parenteral musci-

5. Lithium. Acute lithium has been reported t wood AND ALTAR
ecreased action of intrastriatal muscimol is antagonized by bicu-COMALTAR
action of intrastriatal muscimol is antagonized by bicu-
culline and by prior kainate lesions of striatal neurons
(205). In acutely hemitransected rats, parenteral musci-(205).

ALTAR

action of intrastriatal muscimol is antagonized by bic

culline and by prior kainate lesions of striatal neuro

(205). In acutely hemitransected rats, parenteral mus

mol does not change striatal 3-MT levels action of intrastriatal muscimol is antagonized by bicu-
culline and by prior kainate lesions of striatal neurons
(205). In acutely hemitransected rats, parenteral musci-
mol does not change striatal 3-MT levels (205). The action of intrastriatal muscimol is antagonized by bicu-
culline and by prior kainate lesions of striatal neurons
(205). In acutely hemitransected rats, parenteral musci-
mol does not change striatal 3-MT levels (205). The culline and by prior kainate lesions of striatal neurons (205). In acutely hemitransected rats, parenteral muscimol does not change striatal 3-MT levels (205). These data argue for a modulation by muscimol of an undefined (205). In acutely hemitransected rats, pair mol does not change striatal 3-MT level data argue for a modulation by muscimol if feedback pathway with cell bodies in the nerve terminals in the substantia nigra. Local injecti bl does not change striatal 3-MT levels (205). These
ta argue for a modulation by muscimol of an undefined
edback pathway with cell bodies in the striatum and
rve terminals in the substantia nigra.
Local injections of both

data argue for a modulation by muscimol of an undefined
feedback pathway with cell bodies in the striatum and
nerve terminals in the substantia nigra.
Local injections of both muscimol and kojic amine into
the substantia n feedback pathway with cell bodies in the striatum and
nerve terminals in the substantia nigra.
Local injections of both muscimol and kojic amine into
the substantia nigra were also investigated (205). In these
experiments, nerve terminals in the substantia nigra.

Local injections of both muscimol and kojic amine into

the substantia nigra were also investigated (205). In these

experiments, either compound decreased striatal 3-MT

levels in Local injections of both muscimol and kojic amine into
the substantia nigra were also investigated (205). In these
experiments, either compound decreased striatal 3-MT
levels in a bicuculline-reversible manner. In summary, the substantia nigra were also investigated (205). In the experiments, either compound decreased striatal 3-N
levels in a bicuculline-reversible manner. In summa
GABA-A agonists decrease striatal DA release via a
tions wit periments, either compound decreased striatal 3-MT
vels in a bicuculline-reversible manner. In summary,
ABA-A agonists decrease striatal DA release via ac-
ons within both the striatum and substantia nigra.
2. GABA-B agoni

levels in a bicuculline-reversible manner. In summary GABA-A agonists decrease striatal DA release via actions within both the striatum and substantia nigra.
2. GABA-B agonists. The GABA-B agonist baclofen like GABA-A agon GABA-A agonists decrease striatal DA release via actions within both the striatum and substantia nigra.
2. GABA-B agonists. The GABA-B agonist baclofen,
like GABA-A agonists, decreases striatal 3-MT in con-
junction with tions within both the striatum and substantia nigra.
2. GABA-B agonists. The GABA-B agonist baclofen,
like GABA-A agonists, decreases striatal 3-MT in con-
junction with dramatic elevations in DOPAC and HVA
(191). This unc 2. GABA-B agonists. The GABA-B agonist baclofen,
like GABA-A agonists, decreases striatal 3-MT in con-
junction with dramatic elevations in DOPAC and HVA
(191). This uncoupling of DA synthesis and release is
similar to tha like GABA-A agonists, decreases striatal 3-MT in con-
junction with dramatic elevations in DOPAC and HVA
(191). This uncoupling of DA synthesis and release is
similar to that observed with GBL (58, 201). In addition,
drug junction with dramatic elevations in DOPAC and HVA
(191). This uncoupling of DA synthesis and release is
similar to that observed with GBL (58, 201). In addition,
drug effects on DA synthesis express cross-tolerance for
GB (191). This
similar to the similar to the similar of the SBL and the SSS, 71).
 $3.$ Indirection milar to that observed with GBL (58, 201). In additional effects on DA synthesis express cross-tolerance for BL and baclofen, suggesting a common locus of action 5, 71).
3. *Indirect GABAergics*. The benzodiazepine, diazem

drug effects on DA synthesis express cross-tolerance for GBL and baclofen, suggesting a common locus of action (35, 71).

3. *Indirect GABAergics*. The benzodiazepine, diazepam, decreases steady-state 3-MT levels (205, 211 GBL and baclofen, suggesting a common locus of action (35, 71).

3. *Indirect GABAergics*. The benzodiazepine, diazepam, decreases steady-state 3-MT levels (205, 211, 212)

and the accumulation of 3-MT after pargyline trea (35, 71).

3. *Indirect GABAergics*. The benzodiazepine, diaze-

pam, decreases steady-state 3-MT levels (205, 211, 212)

and the accumulation of 3-MT after pargyline treatment

(99, 211). Push-pull perfusion studies have 3. Indirect GABAergics. The benzodiazepine, diaze-
pam, decreases steady-state 3-MT levels (205, 211, 212)
and the accumulation of 3-MT after pargyline treatment
(99, 211). Push-pull perfusion studies have also shown
that pam, decreases steady-state 3-MT levels (205, 211, 21 and the accumulation of 3-MT after pargyline treatme (99, 211). Push-pull perfusion studies have also show that diazepam can antagonize the increased striatal D release and the accu
(99, 211). Pu
that diazepar
release from
toxin (46).
The action 9, 211). Push-pull perfusion studies have also shown
at diazepam can antagonize the increased striatal DA
lease from cat caudate after local perfusion with picro-
xin (46).
The actions of diazepam on striatal $3-MT$ are ob

that diazepam can antagonize the increased striatal DA
release from cat caudate after local perfusion with picro-
toxin (46).
The actions of diazepam on striatal 3-MT are observed
at doses of 5 mg/kg or greater (218) and a release from cat caudate after local perfusion with picrotoxin (46).

The actions of diazepam on striatal 3-MT are observed

at doses of 5 mg/kg or greater (218) and are reversed

both by the GABA antagonist, picrotoxin, a toxin (46).
The actions of diazepam on striatal 3-MT are observed
at doses of 5 mg/kg or greater (218) and are reversed
both by the GABA antagonist, picrotoxin, and the ben-
zodiazepine receptor antagonist, flumazenil (Ro I he actions of diazepain on striatal 3-MT are observed
at doses of 5 mg/kg or greater (218) and are reversed
both by the GABA antagonist, picrotoxin, and the ben-
zodiazepine receptor antagonist, flumazenil (Ro 151788;
20 at doses of 5 mg/kg or greater (218) and are reversed
both by the GABA antagonist, picrotoxin, and the ben-
zodiazepine receptor antagonist, flumazenil (Ro 151788;
205, 211). This decrease in striatal 3-MT lasts for more
t both by the GABA antagonist, picrotoxin, and the ben-
zodiazepine receptor antagonist, flumazenil (Ro 151788;
205, 211). This decrease in striatal 3-MT lasts for more
than 8 h and is accompanied by decreases in HVA but
wit zodiazepine receptor antagonist, flumazenil (Ro 151788;
205, 211). This decrease in striatal 3-MT lasts for more
than 8 h and is accompanied by decreases in HVA but
with no change in DOPAC (218, 219). In a 3-wk chronic
tre 205, 211). This decrease in striatal 3-MT lasts f
than 8 h and is accompanied by decreases in H
with no change in DOPAC (218, 219). In a 3-wk
treatment study, the actions of diazepam on st
MT were found not to express tole an 8 h and is accompanied by decreases in HVA but
th no change in DOPAC (218, 219). In a 3-wk chronic
eatment study, the actions of diazepam on striatal 3-
T were found not to express tolerance (212).
The benzodiazepines c

with no change in DOPAC (218, 219). In a 3-wk chronic
treatment study, the actions of diazepam on striatal 3-
MT were found not to express tolerance (212).
The benzodiazepines clonazepam and nitrazepam, like
diazepam, decr treatment study, the actions of diazepam on striatal 3-
MT were found not to express tolerance (212).
The benzodiazepines clonazepam and nitrazepam, like
diazepam, decrease striatal 3-MT and HVA; however,
these drugs also MT were found not to express tolerance (212).
The benzodiazepines clonazepam and nitrazepam, like
diazepam, decrease striatal 3-MT and HVA; however,
these drugs also decrease DOPAC (212). The significance
of these differen The benzodiazepines
diazepam, decrease str
these drugs also decreas
of these differences b
remains to be defined.
The benzodiazepine azepam, decrease striatal 3-MT and HVA; however,
ese drugs also decrease DOPAC (212). The significance
these differences between various benzodiazepines
mains to be defined.
The benzodiazepine antagonist, flumazenil, does

these drugs also decrease DOPAC (212). The significance
of these differences between various benzodiazepines
remains to be defined.
The benzodiazepine antagonist, flumazenil, does not
alter any striatal DA metabolite but d of these differences between various benzodiazepines
remains to be defined.
The benzodiazepine antagonist, flumazenil, does not
alter any striatal DA metabolite but does antagonize the
actions of benzodiazepine agonists (remains to be defined.
The benzodiazepine antagonist, flumazen
alter any striatal DA metabolite but does ant
actions of benzodiazepine agonists (211). ⁷
benzodiazepine agonist, methylamide- β -carb
boxylate (FG 7142), The benzodiazepine antagonist, flumazenil, does not
alter any striatal DA metabolite but does antagonize the
actions of benzodiazepine agonists (211). The inverse
benzodiazepine agonist, methylamide- β -carboline-3-car-
 alter any striatal DA metabolite but does antagonize the
actions of benzodiazepine agonists (211). The inverse
benzodiazepine agonist, methylamide- β -carboline-3-car-
boxylate (FG 7142), which is anxiogenic, increases DO actions of benzodiazepine agonists (211). The inverse
benzodiazepine agonist, methylamide- β -carboline-3-car-
boxylate (FG 7142), which is anxiogenic, increases DO-
PAC levels in the rat prefrontal cortex (PFC) (180).
R benzodiazepine agonist, methylamide- β -carboline-3-carboxylate (FG 7142), which is anxiogenic, increases DC
PAC levels in the rat prefrontal cortex (PFC) (180
Recent studies using brain dialysis, have also detecte
incre boxylate (FG 7142), which is anxiogenic, increases DO-PAC levels in the rat prefrontal cortex (PFC) (180).
Recent studies using brain dialysis, have also detected
increased DA release in the PFC after FG 7142 (74).
4. GABA

PAC levels in the rat prefrontal cortex (PFC) (180).
Recent studies using brain dialysis, have also detected
increased DA release in the PFC after FG 7142 (74).
4. GABA transaminase inhibitors. The GABA trans-
aminase inhi Recent studies using brain dialysis, have also detected
increased DA release in the PFC after FG 7142 (74).
4. GABA transaminase inhibitors. The GABA trans-
aminase inhibitor, aminooxyacetic acid (AOAA), de-
creases striat increased DA release in the PFC after FG 7142 (74).
4. GABA transaminase inhibitors. The GABA trans-
aminase inhibitor, aminooxyacetic acid (AOAA), de-
creases striatal 3-MT levels with a parallel increase in
DA steady-sta 4. GABA transaminase inhibitors. The GABA transaminase inhibitor, aminooxyacetic acid (AOAA), dcreases striatal 3-MT levels with a parallel increase iDA steady-state levels (124% of control) but does no change DOPAC or HVA aminase inhibitor, aminooxyacetic acid (AOAA), decreases striatal 3-MT levels with a parallel increase in DA steady-state levels (124% of control) but does not change DOPAC or HVA (205). In rats with acute hemitransections

aspet

PHARMACOLOGICAL REVIEW

3-MT MEASUREMENTS AND DA RELE
indicating an action within the striatum, possibly at the wh
level of the dopaminergic nerve ending. Intraventricular cla 3-MT MEASUREMENTS AND DA
indicating an action within the striatum, possibly at the
level of the dopaminergic nerve ending. Intraventricular
administration of the GABA transaminase inhibitor, etl 3-MT MEASUREMENTS AND DA
indicating an action within the striatum, possibly at the
level of the dopaminergic nerve ending. Intraventricular
administration of the GABA transaminase inhibitor, eth-
anolamine-O-sulfate, also indicating an action within the striatum, possibly at the
level of the dopaminergic nerve ending. Intraventricular
administration of the GABA transaminase inhibitor, eth-
anolamine-O-sulfate, also has been reported to decr indicating an action within
level of the dopaminergic n
administration of the GABA
anolamine-O-sulfate, also h
striatal 3-MT levels (44).
5. Tolerance studies. The vel of the dopaminergic nerve ending. Intraventricul
lministration of the GABA transaminase inhibitor, et
lolamine-O-sulfate, also has been reported to decrea
riatal 3-MT levels (44).
5. *Tolerance studies*. The use of DA

administration of the GABA transaminase inhibitor, exercised and analytical 3-MT levels (44).
striated 3-MT levels (44).
5. Tolerance studies. The use of DA metabolite me-
urements to assess drug tolerance is extremely com anolamine-O-sulfate, also has been reported to decrease st
striatal 3-MT levels (44).
5. Tolerance studies. The use of DA metabolite meas-
urements to assess drug tolerance is extremely compli-
cated since, in many cases, striatal 3-MT levels (44). In c.
5. Tolerance studies. The use of DA metabolite meas-
urements to assess drug tolerance is extremely compli-
cated since, in many cases, there is a dissociation between
changes in indices of 5. Tolerance studies. The use of DA metabolite me
urements to assess drug tolerance is extremely come
cated since, in many cases, there is a dissociation betwe
changes in indices of DA metabolism and indices of
release (ta urements to assess drug tolerance is extremely complicated since, in many cases, there is a dissociation between an changes in indices of DA metabolism and indices of DA rangles (table 7). In the case of chronic (3 wk) ben cated since, in many cases, there is a dissociation between
changes in indices of DA metabolism and indices of DA
release (table 7). In the case of chronic (3 wk) benzodi-
in
azepine treatment, this dissociation is cle release (table 7). In the case of chronic (3 wk) benzodi-interpreted to involve a specific mu-2 isoreceptor antag-
azepine treatment, this dissociation is clear in that the onist action of these kappa agonists (207) . release (table 7). In the case of chronic (3 wk) benzo
azepine treatment, this dissociation is clear in that t
drug effects on HVA tolerated, while the decrease in
MT did not tolerate (212). Studies of subchronic (1 w
GABA azepine treatment, this dissociation is clear in that the
drug effects on HVA tolerated, while the decrease in 3-
MT did not tolerate (212). Studies of subchronic (1 wk)
GABA-A (THIP and kojic amine) and GABA-B (baclo-
haf drug effects on HVA tolerated, while the decrease in 3-
MT did not tolerate (212). Studies of subchronic (1 wk) rat. Re
GABA-A (THIP and kojic amine) and GABA-B (baclo-
have den
fen) agonist treatment have indicated tolera MT did not tolerate (212). Studies of subchronic (1 w
GABA-A (THIP and kojic amine) and GABA-B (bacl
fen) agonist treatment have indicated tolerance to t
drug effects on DOPAC and HVA (24) as well as L
steady-state levels GABA-A (THIP and kojic amine) and GABA-B (baclo-
fen) agonist treatment have indicated tolerance to the (9
drug effects on DOPAC and HVA (24) as well as DA (L
steady-state levels (71). Cross-tolerance between baclo-
fen, G fen) agonist treatment have indicated tolerance to the (9-
drug effects on DOPAC and HVA (24) as well as DA (D
steady-state levels (71). Cross-tolerance between baclo-
be fen, GBL, and HA-966 was also monitored with regard drug effects on DOPAC and HVA (24) as well as DA
steady-state levels (71). Cross-tolerance between baclo-
fen, GBL, and HA-966 was also monitored with regard
to enhanced DA synthesis (35, 71). However, no study
of DA relea steady-state levels (71). Cross-tolerance between bac.
fen, GBL, and HA-966 was also monitored with regato enhanced DA synthesis (35, 71). However, no stu
of DA release after chronic GABA-A or GABA-B agon
treatment has bee to enhanced DA synthesis (35, 71). However, no study DA release into rat brain dialysates have also demon-
of DA release after chronic GABA-A or GABA-B agonist strated that mu agonists dramatically increase DA col-
treatme of DA release after chronic GABA-A or GABA-B agonist strated that mu agonists dramatically increase DA col-
treatment has been conducted, thereby limiting specu-
lected in nucleus accumbens dialysates with no effect or
lat treatment has been conducted, thereby limiting specu-

H. Opiates and OpiOid Peptides

of dopaminergic neurons.

DA

DO.

DO.

1. Striatal DA metabolism. Early studies of the effects piri-

of morphine on striatal DOPAC and HVA (reviewed in active

ref. 207 and 208) on the incorporation of radioactive (1R H. Opiates and Opioid Peptides
1. Striatal DA metabolism. Early studies of the effects
of morphine on striatal DOPAC and HVA (reviewed in
ref. 207 and 208) on the incorporation of radioactive
precursors into the DA pool (2 H. Opiates and Opioid Peptides
1. Striatal DA metabolism. Early studies of the effect
of morphine on striatal DOPAC and HVA (reviewed in
tef. 207 and 208) on the incorporation of radioactiv
precursors into the DA pool (27) 1. Striatal DA metabolism. Early studies of the effects of morphine on striatal DOPAC and HVA (reviewed in ref. 207 and 208) on the incorporation of radioactive precursors into the DA pool (27) and on L-DOPA accumulation (of morphine on striatal DOPAC and HVA (reviewed in
ref. 207 and 208) on the incorporation of radioactive
precursors into the DA pool (27) and on L-DOPA accu-
mulation (139) indicated that DA metabolism was dra-
matically e ref. 207 and 208) on the incorporation of radioactive (precursors into the DA pool (27) and on L-DOPA accu-
mulation (139) indicated that DA metabolism was dramatically enhanced in both the rat and mouse striatum.
These d precursors into the DA pool (27) and on L-DOPA accu-
mulation (139) indicated that DA metabolism was dra-
matically enhanced in both the rat and mouse striatum.
These data, however, did not explain the differences of
indi mulation (139) indicated that DA metabolism was dra-
matically enhanced in both the rat and mouse striatum.
These data, however, did not explain the differences of
acute morphine (110) on motor behavior in these 2
species matically enhanced in both the rat and mouse striatum.
These data, however, did not explain the differences of
acute morphine (110) on motor behavior in these 2
species (i.e., motor activation in the mouse and motor
depre These data, however, did not explain the differences of indicate morphine (110) on motor behavior in these 2 expecies (i.e., motor activation in the mouse and motor oppression in the rat). In 1978, this issue was addresse acute morphine (110) on motor behavior in these 2 except
species (i.e., motor activation in the mouse and motor opioid
depression in the rat). In 1978, this issue was addressed cortica
in more depth when it was reported t species (i.e., motor activation in the mouse and m
depression in the rat). In 1978, this issue was addre
in more depth when it was reported that, while
incorporation of [³H]tyrosine into labeled rat striatal
and DOPAC oc depression in the rat). In 1978, this issue was addressed
in more depth when it was reported that, while the
incorporation of [³H] tyrosine into labeled rat striatal DA
and DOPAC occurred to a greater extent in D-Ala-Met in more depth when it was reported that, while the
incorporation of [³H] tyrosine into labeled rat striatal DA
and DOPAC occurred to a greater extent in D-Ala-Met-
enkephalin amide-treated animals, no change in the la-
 incorporation of [³H]tyrosine into labeled rat striatal DA soliand DOPAC occurred to a greater extent in D-Ala-Metershephalin amide-treated animals, no change in the labeling of striatal 3-MT was detected (3). At the sa and DOPAC occurred to a greater extent in D-Ala-Met-
enkephalin amide-treated animals, no change in the la-
beling of striatal 3-MT was detected (3). At the same
time, enhanced striatal 3-MT levels were measured in
mouse enkephalin amide-treated animals, no change in the labeling of striatal 3-MT was detected (3). At the same
time, enhanced striatal 3-MT levels were measured in
mouse but not rat striatum after morphine (147, 224). A
compar beling of striatal 3-MT was detected (3). At the same
time, enhanced striatal 3-MT levels were measured in
mouse but not rat striatum after morphine (147, 224). A
comparison of mu and delta analgesics revealed increases
in time, enhanced striatal 3-MT levels were measured in Pr
mouse but not rat striatum after morphine (147, 224). A
comparison of mu and delta analgesics revealed increases
in striatal DOPAC and HVA in both the rat and mouse comparison of mu and delta analgesics revealed increase
in striatal DOPAC and HVA in both the rat and mouse
but an increase in 3-MT levels only in the mouse. In the
mouse, however, strain differences have been described
wi in striatal DOPAC and HVA in both the rat and mouse
but an increase in 3-MT levels only in the mouse. In the
mouse, however, strain differences have been described,
with strains lacking the motor stimulant effects of mor-
 but an increase in 3-MT levels only in the mouse. In the mouse, however, strain differences have been described, with strains lacking the motor stimulant effects of morphine also lacking the increase in striatal 3-MT (147) mouse, however, strain differences have been described,
with strains lacking the motor stimulant effects of mor-
phine also lacking the increase in striatal 3-MT (147).
Local morphine injections indicated that the mouse st with strains lacking the motor stimulant effects of morphine also lacking the increase in striatal 3-MT (147).
Local morphine injections indicated that the mouse striatal 3-MT increases after morphine were the result of ac phine also lacking the increase in striatal 3-MT (147).
Local morphine injections indicated that the mouse stria-
tal 3-MT increases after morphine were the result of
activation of mu receptors in the substantia nigra (147 Local morphine injections indicated that the mouse stread 3-MT increases after morphine were the result activation of mu receptors in the substantia nigra (1-224), while the lack of effect of morphine on rat stria 3-MT ap tal 3-MT increases after morphine were
activation of mu receptors in the substanti
224), while the lack of effect of morphine c
3-MT appeared to be the result of a "presyr
ing" action within the striatum (27, 224).
The ago tivation of mu receptors in the substantia nigra (147, 4), while the lack of effect of morphine on rat striatal MT appeared to be the result of a "presynaptic clampe" action within the striatum (27, 224). The agonist/antag 224), while the lack of effect of morphine on rat striatal 3-MT appeared to be the result of a "presynaptic clamping" action within the striatum $(27, 224)$.
The agonist/antagonist analgesics also elevate striatal __
DOPA

3-MT MEASUREMENTS AND DA RELEASE *IN VIVO* FROM NEURONS 181
indicating an action within the striatum, possibly at the which has been attributed to receptor dualism with this LEASE IN VIVO FROM NEURONS 181
which has been attributed to receptor dualism with this
class of opiates (94, 207, 208, 225). As with mu and delta LEASE IN VIVO FROM NEURONS 181
which has been attributed to receptor dualism with this
class of opiates (94, 207, 208, 225). As with mu and delta
agonists, the agonist/antagonist agents do not increase LEASE IN VIVO FROM NEURONS 181
which has been attributed to receptor dualism with this
class of opiates (94, 207, 208, 225). As with mu and delta
agonists, the agonist/antagonist agents do not increase
striated 3-MT levels which has been attributed t
class of opiates (94, 207, 208
agonists, the agonist/antage
striatal 3-MT levels (207).
In contrast, kappa agonis nich has been attributed to receptor dualism with this
ass of opiates (94, 207, 208, 225). As with mu and delta
onists, the agonist/antagonist agents do not increase
riatal 3-MT levels (207).
In contrast, kappa agonists do

class of opiates (94, 207, 208, 225). As with mu and de
agonists, the agonist/antagonist agents do not increa
striatal 3-MT levels (207).
In contrast, kappa agonists do not alter the levels
any of the DA metabolites but st agonists, the agonist/antagonist agents do not incre
striatal 3-MT levels (207).
In contrast, kappa agonists do not alter the level-
any of the DA metabolites but stereospecifically ant
onize the actions of mu and delta an striatal 3-MT levels (207).
In contrast, kappa agonists do not alter the levels of
any of the DA metabolites but stereospecifically antag-
onize the actions of mu and delta and agonist/antagonist
analgesics on nigrostriata In contrast, kappa agonists do not alter the levels of
any of the DA metabolites but stereospecifically antag-
onize the actions of mu and delta and agonist/antagonist
analgesics on nigrostriatal DA metabolism in both the
 any of the DA metabolites but stereospecifically anto
onize the actions of mu and delta and agonist/antagon
analgesics on nigrostriatal DA metabolism in both t
rat (225) and the mouse (207) . This action has be
interpr onize the actions of mu and delta and agonis
analgesics on nigrostriatal DA metabolism
rat (225) and the mouse (207). This actio
interpreted to involve a specific mu-2 isorec
onist action of these kappa agonists (207).
2. relative is on nigrostriatal DA metabolism in both the t (225) and the mouse (207). This action has been terpreted to involve a specific mu-2 isoreceptor antag-
ist action of these kappa agonists (207).
2. *Mesolimbic and*

rat. (225) and the mouse (207). This action has been
interpreted to involve a specific mu-2 isoreceptor antag-
onist action of these kappa agonists (207).
2. Mesolimbic and mesocortical DA metabolism in the
rat. Regional s interpreted to involve a specific mu-2 isoreceptor and
onist action of these kappa agonists (207).
2. Mesolimbic and mesocortical DA metabolism in
rat. Regional studies of opiate effects on DA metabol
have demonstrated tha onist action of these kappa agonists (207).

2. Mesolimbic and mesocortical DA metabolism in the

rat. Regional studies of opiate effects on DA metabolism

have demonstrated that mu (222) and agonist/antagonist

(94) analg 2. Mesolimbic and mesocortical DA metabolism in τ
rat. Regional studies of opiate effects on DA metaboli
have demonstrated that mu (222) and agonist/antagon
(94) analgesics increase both DA synthesis/metaboli
(DOPAC) a rat. Regional studies of opiate effects on DA metabolism
have demonstrated that mu (222) and agonist/antagonist
(94) analgesics increase both DA synthesis/metabolism
(DOPAC) and release (3-MT) in the rat nucleus accum-
be have demonstrated that mu (222) and agonist/antagonist
(94) analgesics increase both DA synthesis/metabolism
(DOPAC) and release (3-MT) in the rat nucleus accum-
bens. In contrast, synthesis/metabolism is increased in
the $(DOPAC)$ and release $(3-MT)$ in the rat nucleus accum-
bens. In contrast, synthesis/metabolism is increased in (DOPAC) and release (3-MT) in the rat nucleus accum-
bens. In contrast, synthesis/metabolism is increased in
the septum, while release is unaltered (207). Studies of
DA release into rat brain dialysates have also demon-
st bens. In contrast, synthesis/metabolism is increased in
the septum, while release is unaltered (207). Studies of
DA release into rat brain dialysates have also demon-
strated that mu agonists dramatically increase DA col-
 DA release into rat brain dialysates have also demonstrated that mu agonists dramatically increase DA colstrated that mu agonists dramatically increase DA collected in nucleus accumbens dialysates with no effect or small increases in striatal dialysate DA levels (57a).
Analysis of the actions of morphine on mesocortical DA me

1. *Striatal DA metabolism.* Early studies of the effects priform, and cingulate cortices. In contrast, neither DA
1. *Striatal DA metabolism*. Early studies of the effects metabolite was elevated in the entorhinal corte lected in nucleus accumbens dialysates with no effect of small increases in striatal dialysate DA levels (57a).
Analysis of the actions of morphine on mesocortica
DA metabolism (table 12) have demonstrated increased
DOPAC sman increases in striatal dialysate DA levels (57a).

Analysis of the actions of morphine on mesocortical

DA metabolism (table 12) have demonstrated increased

DOPAC (105a, 105b) and 3-MT (222) in the prefrontal,

pirif DA metabolism (table 12) have demonstrated increased
DOPAC (105a, 105b) and 3-MT (222) in the prefrontal,
piriform, and cingulate cortices. In contrast, neither DA
metabolite was elevated in the entorhinal cortex. The
act *(1R,5R,9R*)-5,9-dimethyl-2-(L-tetrahydrofurfuryl) piriform, and cingulate cortices. In contrast, neither DA
metabolite was elevated in the entorhinal cortex. The
actions of morphine were also reversed by $(-)$ - α - $(1R,5R,9R)$ -5,9-dimethyl-2-(L-tetrahydrofurfuryl)-
2'-hy metabolite was elevated in the entorhinal cortex. The
actions of morphine were also reversed by $(-)$ - α -
 $(1R, 5R, 9R)$ -5,9-dimethyl-2-(L-tetrahydrofurfuryl)-
2'-hydroxy-6,7-benzomorphan (MR-2034) indicating
that, as in $2'$ -hydroxy-6,7-benzomorphan (MR-2034) indicating that, as in the striatum (section IV H 1), these opiate effects are mu-2 receptor mediated (105b). These data indicate that the mesocortical dopaminergic pathways, $(1R, 5R, 9R)$ -5,9-dimethyl-2-(L-tetrahydrofurfuryl)-2'-hydroxy-6,7-benzomorphan (MR-2034) indicating that, as in the striatum (section IV H 1), these opiate effects are mu-2 receptor mediated (105b). These data indicate $2'$ -hydroxy-6,7-benzomorphan (MR-2034) indicating
that, as in the striatum (section IV H 1), these opiate
effects are mu-2 receptor mediated (105b). These data
indicate that the mesocortical dopaminergic pathways,
except that, as in the striatum (section IV H 1), these opia
effects are mu-2 receptor mediated (105b). These da
indicate that the mesocortical dopaminergic pathway
except for the entorhinal cortex (105a), receive pote
opioid inp effects are mu-2 recoindicate that the metrorior except for the entorior opioid inputs which cortical DA neurons.
The actions of ago dicate that the mesocortical dopaminergic pathways,
cept for the entorhinal cortex (105a), receive potent
ioid inputs which can increase the activity of meso-
rtical DA neurons.
The actions of agonist/antagonist analgesics

except for the entorhinal cortex (105a), receive potent
opioid inputs which can increase the activity of meso-
cortical DA neurons.
The actions of agonist/antagonist analgesics on me-
solimbic and mesocortical DA cells ar opioid inputs which can increase the activity of meso-
cortical DA neurons.
The actions of agonist/antagonist analgesics on me-
solimbic and mesocortical DA cells are also complex. In
the case of butorphanol, both DOPAC an

in the rational control in the rat brain (94, 105a, 105b, 207)
in the rat brain (94, 105a, 105b, 207)
in man

Brain region	DOPAC	3-MT	
Nigrostriatal			
Striatum			
Mesolimbic			
Nucleus accum-			
bens			
Olfactory tubercle			
Septum			
Mesocortical			
Prefrontal cortex			
Pyriform cortex			
Cingulate cortex			
Entorhinal cortex			

* Small increase at "high" doses.

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

HARM
REV

PHARMACOLOGICAL REVIEWS

increased in the nucleus accumbens (94); however, no wood M
increased in the nucleus accumbens (94); however, no
effect was observed in the olfactory tubercle or the pre-
frontal, piriform, or cingulate cortices (94). 182
increased in the nucleus accumbens (94) ; heffect was observed in the olfactory tubercle
frontal, piriform, or cingulate cortices (94) . effect was observed in the olfactory tubercle or the pre-
frontal, piriform, or cingulate cortices (94).
I. Cholecystokinin

nervous system in the role of cholecystokinin and a last the role of cholecystokinin (CCK) in the wind in part because of the positive of this peptide to modulate the release of dopa-I. Cholecystokinin
Interest in the role of cholecystokinin (CCK) in the
nervous system has developed in part because of the
ability of this peptide to modulate the release of dopa-
mine in several forebrain areas. Peripher Interest in the role of cholecystokinin (CCK) in
nervous system has developed in part because of
ability of this peptide to modulate the release of d
mine in several forebrain areas. Peripheral administion
of the sulfated Interest in the role of cholecystokinin (CCK) in the
nervous system has developed in part because of the
ability of this peptide to modulate the release of dopa-
mine in several forebrain areas. Peripheral administra-
tion nervous system has developed in part because of ability of this peptide to modulate the release of domine in several forebrain areas. Peripheral adminition of the sulfated octapeptide of CCK (CCK-8S) creases the basal rele ability of this peptide to modulate the release of dopa-
mine in several forebrain areas. Peripheral administra-
pertion of the sulfated octapeptide of CCK (CCK-8S) de-
creases the basal release of dopamine from mesoaccummine in several forebrain areas. Peripheral administra-
tion of the sulfated octapeptide of CCK (CCK-8S) de-
correlate well with behavioral data where the direct
creases the basal release of dopamine from mesoaccum-
bens d tion of the sulfated octapeptide of CCK (CCK-8S) decreases the basal release of dopamine from mesoaccum-
combens dopamine neurons as determined with in vivo above
voltammetry (28, 113). However, increases in dopamine the
 creases the basal release of dopamine from mesoaccu
bens dopamine neurons as determined with in vi
voltammetry (28, 113). However, increases in dopamin-
release have also been measured, with microdialysis,
the striatum and bens dopamine neurons as determined with in vivo alvertimentry (28, 113). However, increases in dopamine the release have also been measured, with microdialysis, in the striatum and accumbens following peripheral administ voltammetry (28, 113). However, increases in dopamine
release have also been measured, with microdialysis, in
the striatum and accumbens following peripheral admin-
istration of CCK-8S (159). We thus determined with 3-
MT release have also been measured, with microdialysis, in
the striatum and accumbens following peripheral admin-
istration of CCK-8S (159). We thus determined with 3-
MT measurements whether CCK-8S attenuates basal
dopamine the striatum and accumbens following peripheral admini-
istration of CCK-8S (159). We thus determined with 3-
MT measurements whether CCK-8S attenuates basal
dopamine release in the frontal cortex, olfactory tubercle,
or istration of CCK-8S (159). We thus determined with 3-
MT measurements whether CCK-8S attenuates basal of
dopamine release in the frontal cortex, olfactory tubercle,
or caudate-putamen and whether CCK-8S can reverse
the in MT measurements whether CCK-8S attenuates basal
dopamine release in the frontal cortex, olfactory tubercle,
or caudate-putamen and whether CCK-8S can reverse
the increase in striatal and limbic dopamine release
induced by dopamine release in the frontal cortex, olfactory tubercle,
or caudate-putamen and whether CCK-8S can reverse
the increase in striatal and limbic dopamine release
induced by pharmacological means $(d$ -amphetamine or
halope the increase in striatal and limbic dopamine release
induced by pharmacological means $(d$ -amphetamine or
haloperidol). These studies have been performed in both
the mouse $(5, 7)$ and the rat (51) and indicate that CCKthe increase in striatal and limbic dopamine release
induced by pharmacological means $(d$ -amphetamine or
haloperidol). These studies have been performed in both
the mouse $(5, 7)$ and the rat (51) and indicate that CCKinduced by pharmacological means $(d$ -amphetamine or haloperidol). These studies have been performed in both the mouse $(5, 7)$ and the rat (51) and indicate that CCK-
8S decreases basal 3-MT levels in the striatum and f haloperidol). These studies have been performed in both
the mouse $(5, 7)$ and the rat (51) and indicate that CCK-
8S decreases basal 3-MT levels in the striatum and
frontal cortex, and the olfactory tubercle at high do the mouse $(5, 7)$ and the rat (51) and indicate that CCK-
8S decreases basal 3-MT levels in the striatum and
frontal cortex, and the olfactory tubercle at high doses
of the peptide. These effects were both dose and tim 8S decreases basal 3-MT levels in the striatum and
frontal cortex, and the olfactory tubercle at high doses 201
of the peptide. These effects were both dose and time
dependent. Additionally, CCK-8S was found to dose CO
 frontal cortex, and the olfactory tubercle at high doses
of the peptide. These effects were both dose and time
dependent. Additionally, CCK-8S was found to dose
dependently antagonize the increases in striatal and
olfactor treatment. pendent. Additionally, CCK-8S was found to dose compendently antagonize the increases in striatal and mateur factory tubercle 3-MT after amphetamine (15 mg/kg) postment.
Prior work with CCK has also shown that the sulfated

dependently antagonize the increases in striatal and machineous offsectory tubercle 3-MT after amphetamine (15 mg/kg) pend
treatment.
Prior work with CCK has also shown that the sulfated $(6 \text{octapeptide decreases spontaneous dopamine release in drug})$
the nucleus acc olfactory tubercle 3-MT after amphetamine (15 mg/kg) perceatment.

Prior work with CCK has also shown that the sulfated

octapeptide decreases spontaneous dopamine release in druce

the nucleus accumbens (28, 113). Howev treatment.

Prior work with CCK has also shown that the sulfated

octapeptide decreases spontaneous dopamine release in

the nucleus accumbens (28, 113). However, the CCK-8S

effects on 3-MT are even more apparent when dop Prior work with CCK has also shown that the sulfated octapeptide decreases spontaneous dopamine release in the nucleus accumbens (28, 113). However, the CCK-8S effects on 3 -MT are even more apparent when dopamine releas octapeptide decreases spontaneous dopamine release in due nucleus accumbens (28, 113). However, the CCK-8S later effects on 3-MT are even more apparent when dopamine release is augmented by *d*-amphetamine or haloperidol. the nucleus accumbens (26, 115). However, the CCK-6S
effects on 3-MT are even more apparent when dopamine
release is augmented by d-amphetamine or haloperidol.
The reversals by CCK-8S of elevations in 3-MT following
halope release is augmented by *d*-amphetamine or haloperidol. the reversals by CCK-8S of elevations in 3-MT following phaloperidol or *d*-amphetamine were not simply additive the effects of the two drugs. Rather, the magnitude o The reversals by CCK-8S of elevations in 3-MT following
haloperidol or *d*-amphetamine were not simply additive
effects of the two drugs. Rather, the magnitude of the
CCK attenuation of elevated dopamine release following
 haloperidol or *d*-amphetamine were not simply additive tiffects of the two drugs. Rather, the magnitude of the identical CCK attenuation of elevated dopamine release following either drug greatly exceeded the extent of 3 effects of the two drugs. Rather, the magnitude of the ic
CCK attenuation of elevated dopamine release following
either drug greatly exceeded the extent of 3-MT de-
creases obtained with CCK-8S alone. This was especially
t CCK attenuation of elevated dopamine release following
either drug greatly exceeded the extent of 3-MT de-
creases obtained with CCK-8S alone. This was especially
netrue in the olfactory tubercle, where CCK-8S had little
 either drug greatly exceeded the extent of 3-MT of creases obtained with CCK-8S alone. This was especiatrue in the olfactory tubercle, where CCK-8S had lit or no effect on basal dopamine release but reversed t 200% increas creases obtained with CCK-8S alone. This was especial
true in the olfactory tubercle, where CCK-8S had litt
or no effect on basal dopamine release but reversed the
200% increase in release induced by *d*-amphetamin
Thus, true in the olfactory tubercle, where CCK-8S had little form
or no effect on basal dopamine release but reversed the
200% increase in release induced by *d*-amphetamine.
Thus, CCK-8S appears to more greatly suppress dopa-
 or no effect on basal dopamine release but reversed 200% increase in release induced by d -amphetami
Thus, CCK-8S appears to more greatly suppress do
mine release when it has been augmented, either
membrane depolariza 200% increase in release induced by *d*-amphetamine.

Thus, CCK-8S appears to more greatly suppress dopa-

mine release when it has been augmented, either by

membrane depolarization (haloperidol) or by impulse-

independ Thus, CCK-8S appears to more greatly suppress do mine release when it has been augmented, either membrane depolarization (haloperidol) or by imputed potation (dependent release (d-amphetamine). This conclusions supported b mine release when it has been augmented, either by
membrane depolarization (haloperidol) or by impulse-
independent release (d-amphetamine). This conclusion
is supported by the ability of CCK to block potassium-
evoked, bu membrane depolarization (haloperidol) or by impulse-
independent release (*d*-amphetamine). This conclusion
is supported by the ability of CCK to block potassium-
evoked, but not basal, dopamine release from nucleus
accumb is supported by the ability of CCK to block potassium-
evoked, but not basal, dopamine release from nucleus MT is a DA metabolite generated subsequent to DA
accumbens slices in vitro (186, 187). These findings are
consiste evoked, but not basal, dopamine release from nucleus MI is a DA metabolite generated subsequent to DA accumbens slices in vitro (186, 187). These findings are release and that 3-MT measurements are a useful index consisten evoked, but not basal, dopamine release from nucleus accumbens slices in vitro (186, 187). These findings are release consistent with the proposed role of endogenous CCK as of a suppressor of forebrain dopamine neurons (6 accumbens slices in vitro (186, 187). These findings are consistent with the proposed role of endogenous CCK as a suppressor of forebrain dopamine neurons (67, 195) and that antipsychotic effects of CCK (134) may be attrib mesolimbic dopamine neurons (141, 156).

WOOD AND ALTAR
ever, no **V. Summary of Known Limitations of 3-MT Measurements**

Interest in the role of cholecystokinin
I. Cholecystokinin a DA metabolite which is only generated subsequent to
I. Cholecystokinin and DA metabolite which is only generated subsequent to
Interest in the role of cholecysto LITAR

V. Summary of Known Limitations of 3-MT

Measurements

The main tenet of the present review is that 3-MT is

DA metabolite which is only generated subsequent to V. Summary of Known Limitations of 3-MT
Measurements
The main tenet of the present review is that 3-MT is
a DA metabolite which is only generated subsequent to
DA release by COMT, an enzyme which is not present Measurements
The main tenet of the present review is that 3-MT is
a DA metabolite which is only generated subsequent to
DA release by COMT, an enzyme which is not present
within dopaminergic neurons. This hypothesis is sup The main tenet of the present review is that 3-MT is
a DA metabolite which is only generated subsequent to
DA release by COMT, an enzyme which is not present
within dopaminergic neurons. This hypothesis is sup-
ported by t The main tenet of the present review is that 3-MT
a DA metabolite which is only generated subsequent
DA release by COMT, an enzyme which is not presen
within dopaminergic neurons. This hypothesis is sup
ported by the excel DA release by COMT, an enzyme which is not present DA release by COMT, an enzyme which is not present
within dopaminergic neurons. This hypothesis is sup-
ported by the excellent agreement between 3-MT meas-
urements and the levels of DA collected in push-pull
perfusates a within dopaminergic neurons. This hypothesis is sup-
ported by the excellent agreement between 3-MT meas-
urements and the levels of DA collected in push-pull
perfusates and brain dialysates. Additionally, these data
corre ported by the excellent agreement between 3-MT measurements and the levels of DA collected in push-pull
perfusates and brain dialysates. Additionally, these data
correlate well with behavioral data where the direct
compari urements and the levels of DA collected in push-pull
perfusates and brain dialysates. Additionally, these data
correlate well with behavioral data where the direct
comparisons have been made. However, as presented
above, s perfusates and brain dialysates. Additionally, these data
correlate well with behavioral data where the direct
comparisons have been made. However, as presented
above, several potential pitfalls must be considered in
the e correlate well with beha
comparisons have been in
above, several potential p
the evaluation of any new
of dopaminergic neurons.
(a) Monoamine oxidase

**above, several potential pitfalls must be considered in

the evaluation of any new pharmacological manipulation

of dopamine gic neurons.

(a) Monoamine oridase inhibitors will increase 3-MT

levels; therefore, any drug u** levels; therefore, any drug under study should be devoid the evaluation of any new pharmacological manipulation
of dopaminergic neurons.
(a) Monoamine oxidase inhibitors will increase 3-MT
levels; therefore, any drug under study should be devoid
of this action. An example of thi (a) Monoamine oxidase inhibitors will increase 3-MT levels; therefore, any drug under study should be devoid of this action. An example of this problem was an early study of N,N-dimethyltryptamine in which increased 3-MT l levels; therefore, any drug under study should be devoid
of this action. An example of this problem was an early
study of N,N-dimethyltryptamine in which increased 3-
MT levels were hypothesized to indicate a DA releasing
 of this action. An example of this problem was an early
study of N,N-dimethyltryptamine in which increased 3-
MT levels were hypothesized to indicate a DA releasing
action for this agent (167). However, subsequent studies
 MT levels were hypothesized to indicate a DA releasing
action for this agent (167). However, subsequent studies
clearly demonstrated that this effect was mainly the
result of monoamine oxidase inhibition (193). action for this agent (167). However, subsequent studies

201). *(b)* COMT inhibitors will decrease 3-MT levels (191, 01).
(c) Dietary factors which alter the activity of MAO or

result of monoamine oxidase inhibition (193).

(b) COMT inhibitors will decrease 3-MT levels (19

201).

(c) Dietary factors which alter the activity of MAO of

COMT can also complicate the interpretation of phar-

macolog (b) COMT inhibitors will decrease 3-MT levels (19
201).
(c) Dietary factors which alter the activity of MAO
COMT can also complicate the interpretation of phanacological studies. For example, COMT is a Mg-opendent enzyme, 201).

(c) Dietary factors which alter the activity of MAO or

COMT can also complicate the interpretation of phar-

macological studies. For example, COMT is a Mg-de-

pendent enzyme, such that in Mg-deficient rats striat (c) Dietary factors which alter the activity of MAC
COMT can also complicate the interpretation of ph
macological studies. For example, COMT is a Mg-
pendent enzyme, such that in Mg-deficient rats stric
3-MT levels are dec macological studies. For example, COMT is a Mg-dependent enzyme, such that in Mg-deficient rats striatal 3-MT levels are decreased (unpublished observations).
(d) Species and pathway differences, with regard to drug effect 3-MT levels are decreased (unpublished observations).

lated. *(d)* Species and pathway differences, with regard to drug effects, should always be tested and not extrapolated.
 (e) Although there are no published drug effects on the clearance of 3-MT, this should be considered as a

(d) Species and pathway differences, with regard to
drug effects, should always be tested and not extrapo-
lated.
(e) Although there are no published drug effects on
the clearance of 3-MT, this should be considered as a
p drug effects, should always be tested and not extrapolated.

(e) Although there are no published drug effects on

the clearance of 3-MT, this should be considered as a

possible site of action for some drugs, especially si (e) Although there are no published drug effects
the clearance of 3-MT, this should be considered as
possible site of action for some drugs, especially sir
the dynamics of this metabolite pool demonstrate sign
icant specie e clearance of 3-MT, this should be considered as a
ssible site of action for some drugs, especially since
e dynamics of this metabolite pool demonstrate signif-
int species differences (216).
(*f*) Inability to measure 3-

possible site of action for some drugs, especially since
the dynamics of this metabolite pool demonstrate signif-
icant species differences (216).
 (f) Inability to measure 3-MT associated with the
incertohypothalamic dop the dynamics of this metabolite pool demonstrate signif-
icant species differences (216).
(*f*) Inability to measure 3-MT associated with the
incertohypothalamic dopaminergic pathway, since the
nerve endings are juxtaposed icant species differences (216).

(*f*) Inability to measure 3-N

incertohypothalamic dopaminen

nerve endings are juxtaposed to

form classical synapses (130a).

When these potential pitfalls (f) Inability to measure 3-MT associated with the certohypothalamic dopaminergic pathway, since the revelondings are juxtaposed to blood vessels and do rem classical synapses (130a). When these potential pitfalls are al incertohypothalamic dopaminergic pathway, since the
nerve endings are juxtaposed to blood vessels and do not
form classical synapses (130a).
When these potential pitfalls are all taken into consid-
eration, reliable interp

nerve endings are juxtaposed to
form classical synapses (130a).
When these potential pitfalls
eration, reliable interpretation
DA release should be possible. When these potential pitfalls are all taken into consideration, reliable interpretation of the effects of drugs on DA release should be possible.
VI. Conclusions

ation, reliable interpretation of the effects of drugs on
A release should be possible.
VI. Conclusions
A thorough review of the literature indicates that 3-
T is a DA metabolite generated subsequent to DA DA release should be possible.

VI. Conclusions

A thorough review of the literature indicates that 3-

MT is a DA metabolite generated subsequent to DA

release and that 3-MT measurements are a useful index VI. Conclusions
A thorough review of the literature indicates that 3-MT is a DA metabolite generated subsequent to DA
release and that 3-MT measurements are a useful index
of DA release in vivo. Furthermore, the simplicity A thorough review of the literature indicates that 3-MT is a DA metabolite generated subsequent to DA release and that 3-MT measurements are a useful index of DA release in vivo. Furthermore, the simplicity of 3-MT measure A thorough review of the literature indicates that 3-
MT is a DA metabolite generated subsequent to DA
release and that 3-MT measurements are a useful index
of DA release in vivo. Furthermore, the simplicity of 3-
MT measu MT is a DA metabolite generated subsequent to DA
release and that 3-MT measurements are a useful index
of DA release in vivo. Furthermore, the simplicity of 3-
MT measurements, as compared to brain dialysis or
push-pull pe release and that 3-MT measurements are a useful index
of DA release in vivo. Furthermore, the simplicity of 3-
MT measurements, as compared to brain dialysis or
push-pull perfusion methods, will lead to an increase in
the dopaminergic pathways in the CNS.

- 1. AGHAJANIAN, G. K., AND BUNNEY, B. S.: Dopamine autoreceptors: phar-

macological characterization by microiontophoretic single cell recordin

macological characterization by microiontophoretic single cell recordin S-MI MEASUREMENTIS AND DA REI
REFERENCES
macological characterization by microiontophoretic single cell recording
studies. Naunyn-Schmiedeberg's Arch. Pharmacol. 297: 1-10, 1977.
- REFERENCES

1. AGHAJANIAN, G. K., AND BUNNEY, B. S.: Dopamine autoreceptors: pharmacological characterization by microiontophoretic single cell recording

studies. Naunyn-Schmiedeberg's Arch. Pharmacol. 297: 1-10, 1977.

2 macological characterization by microiontophoretic single cell recording
studies. Naunyn-Schmiedeberg's Arch. Pharmacol. 297: 1-10, 1977.
BD, Y., JAVOY, F., AND YOUDIM, M. B. H.: Monoamine oxidase and
aldehyde dehydrogenas 2. AGER, Y., JAVOY, F., AND YOUDIM, M. B. H.: Monoamine oxidase and aldehyde dehydrogenase activity in the striatum of rats after 6-hydroxy-
dopamine lesion of the nigrostriatal pathway. Br. J. Pharmacol. 48: 175-
3. ALGER
-
- aldehyde dehydrogenase activity in the striatum of rats after 6-hydroxy-
dopamine lesion of the nigrostriatal pathway. Br. J. Pharmacol. 48: 175-
178, 1973.
3. ALGERI, S., BRUNELLO, N., CALDERINI, A., AND CONSOLAZIONE, A.: 5. ALTAR, C. A., BERNER, B., BEALL, R., CARLSEN, S. F., AND BOYAR, W. C.:

Dopemine release and metabolism after chronic delivery of selective or

non-selective dopamine autoreceptor agonists. Mol. Pharmacol. 33: 690-

65.
- Suppression of dopamine release and metabolism after chronic delivery of selective or non-selective dopamine autoreceptor agonists. Mol. Pharmacol. 33: 690–695, 1988.

5. ALTAR, C. A., AND BOYAR, W. C.; Brain CCK-B recepto
- s. ALTAR, C. A., AND BOYAR, W. C.: Brain CCA-B receptors mediate the
suppression of dopamine release by cholecystokinin. Brain Res. (in press),
1988.
6. ALTAR, C. A., BOYAR, W. C., OEI, E., AND WOOD, P. L.: Dopamine
autore attereceptors modulate the in vivo release of dopamine in the frontal, cingulate and entorhinal cortices. J. Pharmacol. Exp. Ther. 242: 115-120, 1987.

7. ALTAR, C. A., BOYAR, W. C., OBI, E., AND WOOD, P. L.: Cholecystokin
-
- 7. ALTAR, C. A., BOYAR, W. C., OEI, E., AND WOOD, P. L.: Cholecystokinin
attenuates basal and drug-induced increases of limbic and striatal dopa-
mine release. Brain Res. 460:76-82, 1988.
8. ALTAR, C. A., BOYAR, W. C., AND
-
- **10. ALTAR, C. A., AND HAUSER, K.: Topography of substantia nigra innervation**
 10. ALTAR, C. A., AND HAUSER, K.: Topography of substantia nigra innervation
 10. ALTAR, C. A., JOYCE, J. N., AND MARSHALL, J. F.: Function 9. ALTAR, C. A., AND HAUSER, K.: Topography of substantia nigra innervation
by D1 receptor-containing striatal neurons. Brain Res. 410: 1-11, 1987.
10. ALTAR, C. A., JOYCE, J. N., AND MARSHALL, J. F.: Functional organizati
-
- nigrostriatal lesions: implications for behavioral recovery from brain in press), 1988.

12. ALTAR, C. A., MARIEN, M. R., AND MARSHALL, J. F.: Time course of

adaptations in dopamine synthesis, metabolism, and release following

nigrostriatal lesions: implications for behavioral recovery from
- injury. J. Neurochem. 48: 390–399, 1987.

13. ALTAR, C. A., AND MARSHALL, J. F.: Neostriatal dopamine uptake and

reversal of age-related movement disorders with dopamine uptake inhi-

itors. In Central Determinants of Age
- reversal of age-related movement disorders with dopamine uptake inhibitors. In Central Determinants of Age-related Declines in Motor Function, ed. by J. Joseph, pp. 343–354, New York Academy, New York, 1987.
FIRE, C. A., O ing of 6-hydroxydopamine or gamma-hydroxybutyrate in awake rats. Neuropharmacology 23: 309-318, New York headers. Neuropharmacology 23: 309-318, 1987.
14a. ALTAR, C. A., O'NEIL, S., AND MARSHALL, J. F.: Sensorimotor impair
- and neostriatal dopamine metabolite elevations result from intranigra
injection of 6-hydroxydopamine or gamma-hydroxybutyrate in awake rats

Neuropharmacology 23: 309-318, 1987.

LTAR, C. A., WASLEY, A. M., BOYAR, W. C., L ALTAR, C. A., WASLEY, A. M., BOYAR, W. C., LIEBMAN, J., GERHARDT, S., AND WOOD, P. L.: Dopamine neurochemical profile of atypical anti-
psychotics resembles that of D-1 antagonists. Naunyn-Schmiedeberg's
Arch. Pharmacol. 3 **EXAMPLY THE TEXT CONSULTER IN A SET AND WOOD, P. L.: Dopamine neurochemical profile of atypical antipsychotics resembles that of D-1 antagonists. Naunyn-Schmiedeberg's Arch. Pharmacol. 338: 162-168, 1988.

TRAR, C. A., WA**
- psychotics resembles that of D-1 antagonists. Naunyn-Schmiedeberg's
Arch. Pharmacol. 338: 162-168, 1988.

15. ALTAR, C. A., WASLEY, A. M., LIEBMAN, J., GERHARDT, S., KIM, H.,

WELCH, J. J., AND WOOD, P. L.: CGS 10746B: an
- WELCH, J. J., AND WOOD, P. L.: CGS 10746B: an atypical antipsychotic
candidate that selectively decreases dopamine release at behaviorally
effective doese. Life Sci. 39: 699-705, 1986.
16. ANDEN, N.-E., GRABOWSKA-ANDEN, E.
- tion of autoreceptors on dopamine neurons in different brain regions of
rats treated with gammabutyrolactone. J. Neural Trans. 58: 143-152,
1983.
17. ANDERSEN, P. H., AND BRAESTRUP, C.: Evidence for different states of th
- 18. ANDERSEN, P. H., GRONVALD, F. C., AND JANSEN, J. A.: A comparison between dopamine-stimulated adenylate cyclase and ³H-SCH 23390 binding in the rat striatum. Life Sci. 37: 1971–1983, 1985. an adenylate cyclase-coupled state of the D1 receptor. J. Neurochem. 47:

1822–1831, 1986.

18. ANDERSEN, P. H., GRONVALD, F. C., AND JANSEN, J. A.: A comparison

between dopamine-stimulated adenylate cyclase and ³H-SCH
- an adenyiate cyclese-coupled state or the D1 receptor. J. Neurochem. 47:

1822–1831, 1986.

18. ANDERSEN, P. H., GRONVALD, F. C., AND JANSEN, J. A.: A comparison

between dopamine-stimulated adenyiate cyclase and ³H-SCH 19. ANDERSEN, P. H., NIELSEN, E. B., GRONVALD, F. C., AND BRAESTRUP, C.:

Some atypical neuroleptics inhibit [¹H]SCH 23390 binding in vivo. Eur.

J. Pharmacol. 120: 143-144, 1986.

20. BANNON, M. J., AND ROTH, R. H.: Pha
-
- meurons. Pharmacol. Rev. 35: 53-68, 1983.

21. BANNON, M. J., WOLF, M. E., AND ROTH, R. H.: Pharmacology of dopamine neurons innervating the prefrontal, cingulate, and piriform cortices. Eurol. J. Pharmacol. 92: 19. Therma
- NNNON, M. J., WOLF, M. E., AND ROTH, R. H.: Pharmacology of dopamine neurons innervating the prefrontal, cingulate, and piriform cortices. Eur.
J. Pharmacol. 92: 119-125, 1983.
RETHOLINI, G.: Differential effect of neurole neurons innervating the prefrontal, cingulate, and piriform cortices. Eur.
J. Pharmacol. 92: 119-125, 1983.
22. BARTHOLINI, G.: Differential effect of neuroleptic drugs on dopamine turn-
over in the extrapyramidal and limb
-
-

- of GABAergic agonists elevates $[^3H]GABA$ binding and produces tolerance in striatal dopamine catabolism. Brain Res. 335: 169-173, 1985.
25. BERNHEIMER, H., BIRKMAYER, W., HORNYKIEWICZ, O., JELLINGER, K., AND SETTELBERGER, and Huntington. Clinical, morphological, and neurochemical correlations. **J. Neural.** Sci. **20: 415-455, 1973.** 26. BE8SON, **M. J.,** CHERAMY, **A.,** FELTZ, **P., AND GLOWINSKI,** J.: Dopamine:
- AND SEITELBERGER, F.: Brain dopamine and the syndromes of Parkinson
and Huntington. Clinical, morphological, and neurochemical correlations.
J. Neurol. Sci. 20: 415–456, 1973.
esson, M. J., CHERAMY, A., FELTZ, P., AND GLOW
- and Huntington. Clinical, morphological, and neurochemical correlations.

J. Neurol. Sci. 20: 415-455, 1973.

26. BESSON, M. J., CHERAMY, A., FELTZ, P., AND GLOWINSKI, J.: Dopamine:

spontaneous and drug induced release fr spontaneous and drug induced release from the caudate nucleus in the cat. Brain Res. 32: 407–424, 1971.
GcIO, G., CASA, M., CORDA, M. G., DIBELLO, C., AND GESSA, G. L.:
Stimulation of dopamine synthesis in caudate nucleus **527.** Blach Mes. 32: 407-424, 1971.

28. Blach M, CoRA, M. G., DIBELLO, C., AND GESSA, G. L.:

Stimulation of dopennine synthesis in caudate nucleus by intrastriatal

enkephalins and antagonism by naloxone. Science (Wash.
-
- enkephalins and antagonism by naloxone. Science (Wash. DC) 200: 552-
554, 1978.
28. BLAHA, C. D., PHILLIPS, A. G., AND LANE, R. F.: Reversal by cholecysto-
kinin of apomorphine-induced inhibition of dopamine release in the nucleus accumbens of the rat. Regul. Pept. 17: 301-310, 1987.
ANK, C. L., SASA, S., ISERNHAGEN, R., MEYERSON, L. R., WASSIL, D.,
WONG, P., MODAK, A. T., AND STAVINOHA, W. B.: Levels of novembershine
in each dopenine in mou 29. BLANK, C. L., SASA, S., ISERNHAGEN, R., MEYERSON, L. R., WASSIL, D., WONG, P., MODAK, A. T., AND STAVINOHA, W. B.: Levels of norepinephrine and dopamine in mouse brain regions following microwave irradiation—rapid post
- rine and dopamine in mouse brain regions following microwave irradiation—rapid post-mortem degradation of striatal DA in decapitated ani-
mals. J. Neurochem. 33: 213–219, 1979.
UM, M., MCEWEN, B. S., AND ROBERTS, J. L.: Tr 30. BLUM, M., MCEWEN, B. S., AND ROBERTS, J. L.: Transcriptional analysis
of tyrosine hydroxylase gene expression in the tuberinfundibular dope-
minergic neurons of the rat acruate nucleus after estrogen treatment. J.
Biol
-
- of tyrosine hydroxylase gene expression in the tuberinfunduous do-
minergic neurons of the rat arcuste nucleus after estrogen treatment. J.
Biol. Chem. 262: 817-821, 1987.
31. BOWERS, M. B., AND HOFFMAN, F. J.: Homovanilli
- macology 84: 136-137, 1984.

32. BOWERY, N. G., HUDSON, A. L., AND PRICE, G. W.: GABA-A and GABA-

B receptor site distribution in the rat central nervous system. Neuroscience 20: 365-383, 1987.

33. BOYAR, W. C., AND ALTA 33. BOYAR, W. C., AND ALTAR, C. A.: Modulation of dopamine release by D2
but not D1 receptor agonists and antagonists. J. Neurochem. 48: 824-
831, 1987.
34. BRAESTRUP, C.: Biochemical differentiation of amphetamine vs. met
-
- Altar, pp. 53–78, Alan R. Liss, New York, 1986.

11. ALTAR, C. A., AND MARIEN, M. R.: Preservation of dopamine release in the

denervated striatum: implications for Parkinson's disease. Neurosci. Lett.

2. ALTAR, C. A., MA phenidate and nomifensine in rats. J. Pharm. Pharmacol. 29: 463-470,
1977.
35. BROXTERMAN, H. J., NOACH, E. K., VAN VALKENBURG, C. F. M., AND
WIJLING, A.: Cross-tolerance of dopamine metabolism to baclofen,
gamma-butyrolac **35.** BROXTERMAN, H. J., NOACH, E. K., VAN VALKENBURG, C. F. M., AND WILLING, A.: Cross-tolerance of dopamine metabolism to baclofen,
gamma-butyrolactone, and HA-966 in the striatum and olfactory tubercle
of the rat. Life
	- PSYCHERMAN, H. J., VANVALKENBURG, C. F. M., AND NOACH, E. L.: HA-
966 effects on striatal dopamine metabolism: implications for dopamine
compartmentation. J. Pharm. Pharmacol. 32: 67-69, 1980.
77. BURKI, H. R.: Effects of
	- compartmentation. H. R.: Effects of fluperlapine on dopaminergic systems in rat brain.
Phychopharmacologia 89: 77-84, 1986.
38. BURKI, H. R., RUCH, W., AND ASPER, H.: Effects of clozapine, thioridazine,
	- compartmentation. J. Pharm. Pharmacol. 32: 67-69, 1980.

	JRKI, H. R.: Effects of fluperlapine on dopaminergic systems in rat brain.

	Psychopharmacologia 89: 77-84, 1986.

	JRKI, H. R., RUCH, W., AND ABPER, H.: Effects of cl 137. BURKI, H. K.: Effects of tuperlapine on copaminergic systems in rat oral Psychopharmacologia 89: 77-84, 1986.

	23. BURKI, H. R., RUCH, W., AND AsPER, H.: Effects of clozapine, thioridaxin

	perlapine, and haloperidol o
	- JRKI, H. R., RUCH, W., AND ASPER, H.: Effects of clozapine, thioridaxine, perlapine, and haloperidol on the metabolism of the biogenic amines in the brain of the rat. Psychopharmacologia 41: 27-33, 1975.

	JU, N. T.: Relati **40. CAMPOCHIARO, P., T., Relationship between catechol-o-methyltransferase and phenolsulfotransferase in the metabolism of dopamine in the rat brain. J.
Neurochem. 45: 1612–1619, 1985.
40. CAMPOCHIARO, P., SCHWARTZ, R., A**
	- 136: 501-511, 1977.
 41. CAMPOCHIARO, P., SCHWARTZ, R., AND COYLE, J. T.: GABA receptor
 40. CAMPOCHIARO, P., SCHWARTZ, R., AND COYLE, J. T.: GABA receptor

	binding in rat striatum: localization and effects of denervat
	- MPOCHIARO, P., SCHWARTZ, R., AND COYLE, J. T.: GABA receptor
binding in rat striatum: localization and effects of denervation. Brain Res.
136: 501–511, 1977.
RESSON, A., AND LANDQVIST, M.: Effect of chlorpromazine or halop 136: 501-511, 1977.

	136: 501-511, 1977.

	41. CARLSSON, A., AND LINDQVIST, M.: Effect of chlorpromazine or haloperidol

	on formation of 3-methoxytyramine and normetanephrine in mouse brain.

	Acta Pharmacool. Toxicol. 20: 1
	- of 3-methoxytyramine and normation of 3-methoxytyramine in brain.
Acta Pharmacol. Toxicol. 20: 140–144, 1963.
22. CARLSSON, A., LINDQVIST, M., AND KEHR, W.: Postmortal accumulation
of 3-methoxytyramine in brain. Naunyn-Sch
	- neus and automorphism. M., AND KEHR, W.: Postmortal accumulation
of 3-methoxytyramine in brain. Naunyn-Schmiedeberg's Arch. Pharma-
col. 284: 365-372, 1974.
RELSSON, A., AND WINBLAD, B.: Influence of age and time interval of 3-methoxytyramine in brain. Naunyn-Schmiedel
col. 284: 365–372, 1974.
KRLSSON, A., AND WINBLAD, B.: Influence of age and
death and autopsy on dopamine and 3-methoxytyra
basal ganglia. J. Neural Trans. 38: 271–276, 1976.
	- col. 284: 365-372, 1974.

	43. CARESON, A., AND WINELAD, B.: Influence of age and time interval between

	death and autopsy on dopamine and 3-methoxytyramine levels in human

	basal ganglia. J. Neural Trans. 38: 271-276, 1976 death and autopsy on dopamine and 3-methoxytyramine levels in hossal ganglia. J. Neural Trans. 38: 271–276, 1976.

	INTABENI, F., BUGATTI, A., GROPPETTI, A., MAGGI, A., PARENTI, M.

	RACAGNI, G.: GABA and dopamine: their mut **basal ganglia. J. Neural Trans. 38:** 271–276, 1976.
 Sensitive Press, P. BUGATTI, A., GROPPETTI, A., MAGGI, A., PARENTI, M., AND

	RACAGNI, G.: GABA and dopamine: their mutual regulation in the nigro-

	striatal system. I **York, 1979.** R. S. GABA and dopamine: their mutual regulation in the nigred strindard system. *In* GABA-Neurotranemitters, ed. by P. Krogsgaard-La sen, J. Scheel-Kruger, and H. Kofod, pp. 107-117, Academic Press, Ne York,
	- GABA, beta-adrenergic and H. Kofod, pp. 107-117, Academic Press, New
York, 1979.
KANG, R. S. L., TRAN, V. T., AND SNYDER, S. H.: Neurotransmitter
receptor bicalizations: brain season induced alterations in benzodiazepine,
 46. CHANG, R. S. L., TRAN, V. T., AND SNYDER, S. H.: Neurotransmitt
receptor localizations: brain lesion induced alterations in benzodiazepin
GABA, beta-adrenergic, and histamine H1-receptor binding. Brain Re
190: 95-110, receptor localizations: brain lesion induced alterations in benzodiazepine,

	GABA, beta-adrenergic, and histamine H1-receptor binding. Brain Res.

	190: 95-110, 1980.

	46. CHERAMY, A., NIEOULLON, A., AND GLOWINSKI, J.: Bloc
	- GABA, beta-adrenergic, and histamine H1-receptor binding. Brain Res.

	46. CHERAMY, A., NIEOULLON, A., AND GLOWINSKI, J.: Blockade of the picro-

	toxin-induced in vivo release of dopamine in the cat caudate nucleus by

	diaz
	- toxin-induced in vivo release of dopamine in the cat caudate nucleus by diazepam. Life Sci. 20: 811-816, 1977.

	47. CHIURH, C. C., ZAVADIL, A. P., AND MARKEY, S. P.: Increase of striatal 3-

	methoxytyramine but not of homo
	- in rat striated 3-
in rate, C. C., ZAVADIL, A. P., AND MARKEY, S. P.: Increase of striatal 3-
methoxytyramine but not of homovanillic acid following administration
of d-amphetamine or decapitation. Fed. Proc. 37: 509 (abst of *d*-amphetamine or decapitation. Fed. Proc. 37: 509 (abst. 1554), 1978.
48. CHURCH, W. H., JUSTICE, J. B., AND BYRD, L. D.: Extracellular dopamine
in rat striatum following uptake inhibition by cocaine, nomifensine, and SUREL, W. H., JUSTICE, J. B., AND BYRD, L. D.: Extracellular dopamine
in rat striatum following uptake inhibition by cocaine, nomifensine, and
benztropine. Eur. J. Pharmacol. 139: 345-348, 1987.
MINO, M., PONZIO, F., ACHIL
	- in rat striatum following uptake inhibition by cocaine, non-
henztropine. Eur. J. Pharmacol. 139: 345–348, 1987.
MINO, M., PONZIO, F., ACHILLI, G., VANTINI, G., PEREGC
S., AND GARATTINI, S.: Dopaminergic effects of buspiro

spet

- 184 **WOOD AND ALTAR**
184 **WOOD AND ALTAR**
- WOOD AND A
50. COMMISSIONG, J. W.: Monoamine metabolites: their relationship to monominergic neuronal activity. Biochem. Pharmacol. 34: 1127–1131, 1985.
51. Cost, C., ALTAR, C. A., AND WOOD, P. L.: Effects of cholecystokin WOOD AND ALTAR
50. COMMISSIONG, J. W.: Monoamine metabolites: their relationship to mon-
6ffectominergic neuronal activity. Biochem. Pharmacol. 34: 1127-1131, 1985.
51. Cost, C. A., ATAR, C. A., AND WOOD, P. L.: Effects of So. COMMISSIONG, J. W.: Monoamine metabolites: their relationship to mon-

commenter neuronal activity. Biochem. Pharmacol. 34: 1127-1131, 1985.

51. Cost, A.I.T.R., C. A., AND WOOD, P. L.: Effects of cholecystokinin on

a
- acetylcholine turnover and dopamine release in the rat frontal cortex and
striatum. Neuropharmacology (in press), 1988.
52. COSTALL, B., NAYLOR, R. J., AND NOHRIA, V.: Climbing behavior induced
by apomorphine in mice: a po
- activity. Burnopharmacology (in press), 1988.

Scarcial. B., NAVIOR, R. J., AND NOHRIA, V.: Climbing behavior induced

by apomorphine in mice: a potential model for the detection of neuroleptic

activity. Eur. J. Pharmacol by apomorphine in mice: a potential model for the detection of neuroleptic activity. Eur. J. Pharmacol. 50: 39-50, 1978.
AVIES, C. L., AND HEAL, D. J.: Determination of 3-methoxytyramine in
rat brain by HPLC with electroch **53. DAVIES, C. L., AND HEAL, D. J.: Determination of 3-methoxytyramine in**
rat brain by HPLC with electrochemical detection and its correlation with
dopamine function after administration of a monoamine oxidase inhibitor

- and homovanillic acid in rat striatum. J. Neurochem. 47: 1919-1923, 1986.

54. DEDEK, J., BAUMES, R., TIEN-DUC, N., GOMENI, R., AND KORF, J.: Turn-

over of free and conjugated (sulphonyloxy)dialydroxyphenylacetic acid

an type A form of monoamine oxidase within R. AND KORF, J.:
cover of free and conjugated (sulphonyloxy)dihydroxyphenylacetiand
homovanillic acid in rat striatum. J. Neurochem, 33: 687-695,
sMAREST, K. T., SMITH, D. L., AND AZ
- over of free and conjugated (sulphonyloxy)dihydroxyphenylacetic acid and homovanillic acid in rat striatum. J. Neurochem, 33: 687-695, 1979.
55. DEMAREST, K. T., SMITH, D. L., AND AZZARO, A. J.: The presence of the type A
- **ROTH, R. H.: Meson Inc. 1. AND AZZARO, A. J.: The presence of the type A form of monoamine oxidase within nigrostriatal dopamine-containing neurons. J. Pharmacol. Exp. Ther. 215: 461-468, 1980.

ROTH, A. Y., TAM, S.-Y.,** type A form of monoamine oxidase within nigrostriatal dopamine-containing neurons. J. Pharmacol. Exp. Ther. 215: 461-468, 1980.
56. DEUTCH, A. Y., TAM, S.-Y., FREEMAN, A. S., BOWERS, M. B., JR., AND
ROTH, R. H.: Mesolimbic
-
- CHIARA, A. M., PORCEDDU, M. L., FRATTA, W., AND GESSA, G. L.:
Postsynaptic receptors are not essential for dopaminergic feedback regu-
lation. Nature (Lond.) 267: 270-272, 1977.
DICHIARA, G., AND IMPERATO, A.: Opposite eff 57a. DICHIARA, G., AND IMPERATO, A.: Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal
caudate of freely moving rats. J. Pharmacol. Exp. Ther. 244: 1067-1080,
1
- exudate of freely moving rats. J. Pharmacol. Exp. Ther. 244: 1067-1080, 1988.

58. DIGIULIO, A. M., GROPPETTI, A., CATTABENI, F., GALLI, C. L., MAGGI, A., ALGERI, S., AND PONZIO, F.: Significance of dopamine metabolites in
- ALGERI, S., AND PONZIO, F.: Significance of dopamine metabolites in the
evaluation of drugs acting on dopaminergic neurons. Eur. J. Pharmacol.
52: 201-278, 1978.
59. DURING, M. J., ACWORTH, I. N., AND WURTMAN, R. J.: Effec
- DURING, M. J., ACWORTH, I. N., AND WURTMAN, R. J.: Effects of systemic L-tyrosine on dopamine release from rat corpus striatum and nucleus accumbent. Brain Res. 452: 378-380, 1988.
accumbents in the state in the striate in **rat. Science (Wash. DC)** 221: 78-380, 1988.
 **SP. EWING, A. G., BIGELOW, J. C., AND WIGHTMAN, R. M.: Direct in vivo

monitoring of dopamine released from two striatal compartments in the

rat. Science (Wash. DC) 221: 169-**
- monitoring of dopamine released from two striatal compartments in the
rat. Science (Wash. DC) 221: 169-171, 1983.
60. EWING, A. G., AND WIGHTMAN, R. M.: Monitoring the stimulated release
of dopamine with in vivo voltammetr
- 60. EWING, A. G., AND WIGHTMAN, R. M.: Monitoring the stimulated release
of dopamine with in vivo voltammetry. II. Clearance of released dopamine
from extracellular fluid. J. Neurochem. 43: 570-577, 1984.
61. FADDA, F., SE
- 62. FARNEBO, L., AND HAMBERGER, B.: Drug-induced changes in the release of $^{740-708}$, 1974.

³H-monoamines from field stimulated rat brain slices. Acta Physiol. 87. HORNKIEWICZ, O.: Parkinson's disease: from brain homo
- related compounds by electron capture chemical ionization GC-MS. *In* CNS sumulants with phencycliane on dopamine release using in vivo
Mass Spectrometry in Biomedical Research, ed. by S. J. Gaskell, pp. 403-
441, John Wil 641, FAULL, K. F., AND BECK, O.: Quantification of neurotransmitters and
related compounds by electron capture chemical ionization GC-MS. In
Mass Spectrometry in Biomedical Research, ed. by S. J. Gaskell, pp. 403-
441, Joh
- Felated compounds by electron capture chemical ionization GC-MS. In
Mass Spectrometry in Biomedical Research, ed. by S. J. Gaskell, pp. 403-
441, John Wiley & Sons, New York, 1986.
GARRATTI, P., ALGERI, S., BENFENATI, F., 64. **FERRETTI, P., ALGERI, S., BENFENATI, F., CIMINO, M., FERRETTI, C., GARRATTIT, M., AND LIPARTITI, M.: Biochemical effects of minaprine on striatal dopaminergic neurons in rats. J. Pharm. Pharmacol. 36: 48-50, 1984.
198** ganglia functions. Annu. Rev. Gerontol. Geriat. J. Pharmacol. 36: 48-50, 1984.
65. Finction C. E., RANDALL, P. K., AND MARSHALL, J. F.: Aging and basal ganglia functions. Annu. Rev. Gerontol. Geriat. 2: 49-85, 1981.
66. FR
-
- 65. FINCH, C. E., RANDALL, P. K., AND MARSHALL, J. F.: Aging and basal
ganglia functions. Annu. Rev. Gerontol. Geriat. 2: 49-85, 1981.
66. FRENCH, E. D., PILAPIL, C., AND QUIRION, R.: Phencyclidine binding sites
in the nuc
- reduction of dopamine turnover in discreased following lesions of the mesolimbic dopamine system. Eur. J.
Pharmacol. 116: 1–9, 1985.
XXE, K., ANDERSON, K., LOCATELLI, V., AGNATI, L. F., HOKFELT, T.,
SKIRBOLL, L., AND MUTT, Pharmacol. 116: 1-9, 1985.

67. FUXE, K., ANDERSON, K., LOCATELLI, V., AGNATI, L. F., HOKFELT, T., SKIRBOLL, L., AND MUTT, V.: Cholecystokinin peptides produce marked

reduction of dopamine turnover in discrete areas in th
-
- autoreceptors: studies in vivo. J. Pharmacol. Exp. Theorem. 23. Pharmacol. A., AND GROPPETTI, A.: A mass fragmentographic assay of 3-methoxytyr-
amine in rat brain. J. Neurochem. 27: 795–798, 1976.
LLOWAY, M. P., WOLF, M. 89. GALLOWAY, M. P., WOLF, M. E., AND ROTH, R. H.: Regulation of dopamine synthesis in the medial prefrontal cortex is mediated by release modulating autoreceptors: studies in vivo. J. Pharmacol. Exp. Ther. 236: 689-698, 1
- synthesis in the medial prefrontal cortex is mediated by release modulating
autoreceptors: studies in vivo. J. Pharmacol. Exp. Ther. 236: 689-698,
1986.
70. GERHARDT, S., GERBER, R., AND LIEBMAN, J. M.: SCH 23390 dissociat
- from conventional neuroleptics in apomorphine climbing and primate
acute dyskinesia models. Life Sci. 37: 2355-2363, 1985.
71. GIANUTSOS, G., AND MOORE, K. E.: Tolerance to the effects of baclofen
and gamma-butyrolactone o
- From conventional neuroleptics in apomorphine climbing and primate
acute dyskinesia models. Life Sci. 37: 2355-2363, 1985.
71. GLANUTSOS, G., AND MOORE, K. E.: Tolerance to the effects of baclofen
and gamma-butyrolactone o 72. GLAESSER, B. S., BERRY, J. C., BOYAR, W. C., LOVELL, R. A., BR. WALDER, A., LOO, P., STONE, G., KALINSKY, H., AND HUTCHISON, A Dopamine autoreceptor activity of CGS 15855A. Soc. Neurosci. A 11: 501, 1985.

11: 501, B.
-

effects of repeated administration of apomorphine, EMD 23 448, and (+) 3.PPP on A9 neurons. Soc. Neurosci. Abstr. **¹ 1:** 116, 1985.

- ALTAR

effects of repeated administration of apomorphine, EMD 23 448, and (+)

3-PPP on A9 neurons. Soc. Neurosci. Abstr. 11: 116, 1985.

74. GOLDSTEIN, L. E., BRADBERRY, C. W., ROTH, R. H., AND BUNNEY, B. S.:

Simultaneou 3-PPP on A9 neurons. Soc. Neurosci. Abstr. 11: 116, 1985.

74. GOLDSTEIN, L. E., BRADBERRY, C. W., ROTH, R. H., AND BUNNEY, B. S.:

Simultaneous in vivo measurements of dopamine release and metabolism

in the rat medial pr
-
- Antischizophrenic drugs of the dipnehylbutylpiperidine type act as cal-
cium channel antagonists. Proc. Natl. Acad. Sci. USA 80: 5122-5125,
1983.
RACE, A. A., AND BUNNEY, B. S.: Opposing effects of striatonigral feedback
p
- 1983.

77. GRACE, A. A., AND BUNNEY, B. S.: Opposing effects of striatonigral feedback

pathways on midbrain dopamine cell activity. Brain Res. 333: 271-284,

1985.

77. GROPPETTI, A., ALGERI, S., CATTABENI, F., DIGIULIO, pathways on midbrain dopamine cell activity. Brain Res. 333: 271–284,
1985.
ROPPETTI, A., ALGERI, S., CATTABENI, F., DIGIULIO, A. M., GALLI, C. L.,
PONZIO, F., AND SPANO, P. F.: Changes in specific activity of dopamine
met
- 77. GROPPETTI, A., ALGERI, S., CATTABENI, F., DIGIULIO, A. M., GALLI, C. L.,
PONZIO, F., AND SPANO, P. F.: Changes in specific activity of dopamine
metabolites as evidence of a multiple compartmentation of dopamine in
stri 78. GROPPETTI, A., PARENTI, M., GALLI, C. L., BUGATTI, A., CATTABENI, F.,
DIGIULIO, A. M., AND RACAGNI, G.: 3-Methoxytyramine and different
neuroleptics: dissociation from HVA and DOPAC. Life Sci. 23: 1763-
1768, 1978.
29.
- lation. Nature (Lond) 267: 270-272, 1977.

macol. 134: 257-264, 1987.

TOG, 134: 257-264, 1987.

TOG, IL.: FRATTA, W., AND GESSA, G. L.: TOG, SHARMAN, D. F., AND TEGERDINE, P. R.: Some observations on the estimation of 3-m
	- vations on the estimation of 3-methoxytyramine in brain tissue. Br. J.
Pharmacol. 42: 505-511, 1971.
80. HEFTI, F., MELAMED, E., AND WURTMAN, R. J.: Partial lesions of the
dopaminergic nigroetriatal system in rat brain: bi vations on the estimation or 3-methoxytyramine in orain tissue. Br. J.
Pharmacol. 42: 505-511, 1971.
80. HEFTI, F., MELAMED, E., AND WURTMAN, R. J.: Partial lesions of the
dopaminergic nigrostriatal system in rat brain: bi
	-
	- dopaminergic nigrostriatal system in rat brain: biochemical characteriza-
tion. Brain Res. 195: 123-137, 1980.
81. HENN, F. A., AND HAMBERGER, A.: Glial cell function: uptake of transmitter
substances. Proc. Natl. Acad. Sc
	- substances. Proc. Natl. Acad. Sci. USA 68: 2686-2690, 1971.

	82. HITZEMAN, R. J., LOH, H. H., AND DOMINO, E. F.: Effect of phencyclidine

	on the accumulation of ¹⁴C-catecholamines formed from ¹⁴C-tyrosine.

	Arch. Int. **81:** 89-99, 1983. Arch. Int. Pharmacodyn. 202: 252-258, 1973.

	83. HJORTH, S., CARLSSON, A., AND CLARK, D.: Central dopamine agonist and

	antagonist actions of the enantiomers of 3-PPP. Psychopharmacology

	81: 89-99, 1983.

	84. HJORTH, S. A
	- JORTH, S., CARLSSON, A., AND CLARK, D.: Central dopamine agonist and
antagonist actions of the enantiomers of 3-PPP. Psychopharmacology
10RTH, S. A., CARLSSON, A., WIKSTROM, H., LUNDBERG, P., SANCHEZ,
D., HACKSELL, U., ARV autoreceptors. Life Sci. 28: 1225-1238, 1983.
 28: 89. 1983.
 28: B. A., CARLSSON, A., WIKSTROM, H., LUNDBERG, P., SANCHEZ,

	D., HACKSELL, U., ARVIDSSON, L.-E., SVENSSON, U., AND NILSON, J. L.

	G.: 3-PPP, a new central
	- G.: 3-PPP, a new centrally acting DA-receptor agonist with selectivity for
autoreceptors. Life Sci. 28: 1225-1238, 1981.
86. Horver, T., LJuNoDAHL, A., FUXE, K., AND JOHANSSON, O.: Dopamine
nerve terminals in the rat limbi
	- DRYELT, I., LJUNGDAHL, A., FUXE, K., AND JOHANSSON, O.: LOpamine
earve terminals in the rat limbic cortex: aspects of the dopamine hypoth-
esis of schizophrenia. Science (Wash. DC) 184: 177-179, 1974.
DLTZ, R. W., AND COYL merve terminais in the rat limbic cortex: aspects of the copamine nypothesis of schizophrenia. Science (Wash. DC) 184: 177–179, 1974.
DLTZ, R. W., AND COYLE, J. T.: The effects of various salts, temperature, and the alkalo 36. HOLTZ, R. W., AND COYLE, J. T.: The effects of various salts, temperature,
and the alkaloids veratridine and brachotoxin on the uptake of [³H]
dopamine into synaptosomes from rat striatum. Mol. Pharmacol. 10:
746–758
	-
	-
	-
	- **phase high performance liquid chromatography with electrochemical de-**
istry. Neuropharmacology 19: 587-590, 1980.
 istry. Neuropharmacology 19: 587-590, 1980.
 iPERATO, A., AND DICHIARA, G.: Trans-striatal dialysis 90. IMPERATO, A., AND DICHIARA, G.: Trans-striatal dialysis coupled to reverse
phase high performance liquid chromatography with electrochemical de-
tection: a new method for the study of the in vivo release of endogenous

	- EXECH, E. D., PILAPIL, C., AND QUIRION, R.: Phencyclidine-induced hyperactivity are and phencyclidine-induced hyperactivity are assessment and phencyclidine-induced hyperactivity are assessment and phencyclidine-induced hy **Example 12339 Stimulates which controls while the D-1 agonist SCH**
detection: a new method for the study of the in vivo release of endogenous
dopamine and metabolites. J. Neurosci. 4: 966-977, 1984.
PERATO, A., MULAS, A.,
		-
		- release in the dorsal caudate of freely moving rats. Eur. J. Pharmacol.
142: 177-182, 1987.
92. ISHKAWA, K., SHIBANOKI, S., SAITO, S., AND MCGAUGH, J. L.: Effect of
microwave irradiation on monoamine metabolism in dissecte WOOD, P. L.: The dopamine autoreceptor agonist, CGS 15855A, modu-Brain Res. 240: 158–16
ENGAR, S., HAUSLER, A
WOOD, P. L.: The dopa
lates striatal dopamine
cology (in press), 1988.
ENGAR, S., KIM, H. S., A **93. IYENGAR, S., HAUSLER, A., KIM, H. S., MARIEN, M., ALTAR, C. A., AND**

		WOOD, P. L.: The dopamine autoreceptor agonist, CGS 15855A, modulates striatal dopamine metabolism and prolactin release. Neuropharma-

		cology (in
		- accumbens of the rat. Neurosci. 1988.
 A. IYENGAR, S., KIM, H. S., AND WOOD, P. L.: Agonist action of the agonist/

		antagonist analgesic: butorphanol on dopamine metabolism in the nucleus

		accumbens of the rat. Neurosci.
		- antagonist analgesic butorphanol on dopamine metabolism in the nucleus
accumbens of the rat. Neurosci. Lett. 77: 226–230, 1987.
95. JURIO, A. V.: Lesion of selected brain areas as a tool for the demonstration
of some trace
		-
		- of some trace biogenic amines neural pathways. Gen. Pharmacol. 18: 1-
5, 1987.
96. KAAKKOLA, S., MANNISTO, P. T., AND NISSINEN, E.: Striatal membrane-
bound and soluble catechol-o-methyl-transferase after selective lesions the rat. J. Neural. Trans. 69: 221–228, 1987.
the rat. J. Neural. Trans. 69: 221–228, 1987.
AN, J. P., MOUGET-GONIOT, C., BIZIERE, K., LADINSKY, H., AND GAR-
ATTINI, S.: Minaprine, a new atypical stimulant of dopaminergic 97. KAN, J. P., MOUGET-GONIOT, C., BIZIERR, K., LADINSKY, H., AND GAR ATTINI, S.: Minaprine, a new atypical stimulant of dopaminergic neuro transmesions. II. Evidence for dual pre- and post-synaptic mechanisms of action. I
		-

spet

spet

 $\overline{\mathbb{O}}$

-
- 3-MT MEASUREMENTS AND DA RELI
chemical demonstration of catechol-o-methyltransferase in mammalian
brain. Brain Res. 167: 241-250, 1979.
99. KARASAWA, T., FURUKAWA, K., OCHI, V., AND SHIMIZU, M.: Monoamine
metabolites as i MRASAWA, T., FURUKAWA, K., OCHI, V., AND SHIMIZU, M.: Monoamine metabolites as indicators of the effect of centrally acting drugs on mono-amine release in rat brain. Arch. Int. Pharmacodyn. 231: 261-273, 1978. ATO, T., DON 100. KATO, T., DONG, B., ISHII, K., AND KINEMUCHI, H.: Brain dialysis: in vivo metabolism of dopamine and serotonin by monoamine oxidase A but not B in the striatum of unrestrained rats. J. Neurochem. 46: 1277-1282, 1986.

-
-
- metabolism of dopamine and serotonin by monoamine oxidase A but not

B in the striatum of unrestrained rats. J. Neurochem. 46: 1277-1282,

1986.

101. KEHR, W.: 3-Methoxytyramine as an indicator of impulse-induced dopamine hydroxylase activity. J. Pharm. Pharmacol. 24: 744-747, 1972.
103. KEHR, W., CARLSSON, A., LINDQVIST, M., MAGNUSSON, T., AND ATACK,
C.: Evidence for a receptor-mediated feedback control of striatal tyrosine
129.
104. KELLY
- EHR, W., CARLSSON, A., LINDQVIST, M., MAGNUSSON, T., AND ATACK, C.: Evidence for a receptor-mediated feedback control of striatal tyrosine hydroxylase activity. J. Pharm. Pharmacol. 24: 744-747, 1972.
BLLY, R. S., AND WEIG C.: Evidence for a receptor-mediated feedback control of striatal tyrosine
hydroxylase activity. J. Pharm. Pharmacol. 24: 744–747, 1972.
104. KELLY, R. S., AND WRIGHTMAN, R. M.: Detection of dopamine overflow
and diffusion
- nos. RELY, R. S., AND WRIGHTMAN, R. M.: Detection of dopamine overlowing
and diffusion with voltammetry in slices of rat striatum. Brain Res. 423:
79-87, 1987.
105. KILTS, C. D., VRBANAC, J. J., RICKERT, D. E., AND RECH, R fragmentographic determination of 3,4-dihydroxyphenylethylamine and
4-hydroxy-3-methoxyphenethylamine in the caudate nucleus. J. Neuro-
chem. 28: 465-467, 1977.
105a. KIM, H. S., IYENGAR, S., AND WOOD, P. L.: Opiate action
-
- KIM, H. S., IYENGAR, S., AND WOOD, P. L.: Opiate actions on mesocortidopamine metabolism in the rat. Life Sci. 39: 2033–2036, 1986.
KIM, H. S., IYENGAR, S., AND WOOD, P. L.: Reversal of the actions
morphine on mesocortical dopamine metabolism in the rat. Life Sci. 39: 2033-2036, 1986.

105b. KIM, H. S., IYENGAR, S., AND WOOD, P. L.: Reversal of the actions of

morphine on mesocortical dopamine metabolism in the rat by the kappa

agonist MR-2
-
- Syncy Correlation in guinea-pig spinal cord. However, the matrices of department of drugs on the in vivo release of dopamine and its metabolites. Jpn. J.
Pharmacol. 40: 57-67, 1986.
107. KONDO, M., FUJIWARA, H., AND TANAKA or drugs on the in vivo release of dopamine and its metabolites. Jpn. J.

Pharmacol. 40: 57-67, 1986.

107. KoNDO, M., FUJIWARA, H., AND TANAKA, C.: Dopamine release and pre-

synaptic dopaminergic regulation in guinea-pig
-
- **BRAIN SEA. 194: 536-539, 1980.**
 BRAIN SEA. 1980. 2007. ALTERT M.J., AND LIEBERMANN, A. N.: The effect of specific brain lesions on the high affinity binding of GABA in the substantia nigra.

Brain Res. 194: 536-539, 19
- dopamine metabolism: he high affinity binding of GABA in the substantia nigra.
Brain Res. 194: 536-539, 1980.
110. KUSCHINSKY, K., AND HORNYKIEWICZ, O.: Effects of morphine on striatal
dopamine metabolism: possible mechani
-
- CNSCHINSKY, K., AND HORNYKIEWICZ, O.: Elfects of morphine on striatal dopenine metabolism: possible mechanism of its opposite effect on locomine modern accumbens and mice. Eur. J. Pharmacol. 26: 41-50, 1974.

111. LANE, R. as a possible mechanism of action. Blectrochemistry in vivo: application to CNS pharmacology. Ann. NY Acad. Sci. 473: 47-63, 1986.
NR, R. F., AND BLAHA, C. D.: Chronic haloperidol decreases dopaminelease in striatum and nu
- CNS pharmacology. Ann. NY Acad. Sci. 473: 47-63, 1986.

112. LANE, R. F., AND BLAHA, C. D.: Chronic haloperidol decreases dopamine

release in striatum and nucleus accumbens in vivo: depolarization block

as a possible mec
- analysis of cholecystokinin-induced inhibition of dopamine release in the nucleus caudatus. Brain Res. 397: 200-204, 1986.

EHMANN, J., BRILEY, M., AND LANGER, S. Z.: Characterization of dopamine autoreceptor and tritium l analysis of choiecystokinin-induced inhibition of dopamine release in the
nucleus caudatus. Brain Res. 397: 200–204, 1986.
114. LEHMANN, J., BRILEY, M., AND LANGER, S. Z.: Characterization of dopa-
mine autoreceptor and tr
- mine autoreceptor and tritium labeled spiperone binding sites in vitro
with classical and novel dopamine receptor agonists. Eur. J. Pharmacol.
88: 11–26, 1983.
EHMANN, J., AND LANGER, S. Z.: The pharmacological distinctio 116. LEHMANN, J., AND LANGER, S. Z.: The pharmacological distinction between central pre- and postsynaptic dopamine receptors: implications for the pathology and therapy of schizophrenia. *In* Advances in Dopamine Research
- pathology and therapy of schizophrenia. *In* Advances in Dopam
search, ed. by M. Kohaska et al., Pergamon, Oxford, 1982.
116. LiLPgUBT, S., AND CARLSSON, A.: Alteration of central cateche
macol. 30: 728-730, 1978.
117. LIN
- LJEQUIST, S., AND CARLSSON, A.: Alteration of central catecholamine metabolism following acute administration of ethanol. J. Pharm. Pharmacol. 30: 728-730, 1978.
 RDVALL, O., AND BJORKLUND, A.: Dopamine- and norepine phr IFFREE ASSEMBLY OF AND DESCRIPTION THE REAL DRIVER CHARGED MANUSCRIPTION (NURSE AND PRESS, NEW YORK, 1983.

118. LINDVALL, O., BJORKLUND, A., AND FALCK, B.: Fluorescence microscopy

118. LINDVALL, O., BJORKLUND, A., AND FA
-
- **endogenous catecholamines into the perfusate of discrete microscopy**
of biogenic amines in Methods in Neurobiology, ed. by R. Lahue, vol. 2,
pp. 365-431, Plenum Press, New York, 1981.
119. LLOYD, K. G., AND BARTHOLINI, G.
- endogenous catecholamines into the perfusate of discrete brain areas of
the cat in vivo. Experientia (Basel) 31: 560-562, 1975.
120. LOOPUJUT, L. D., AND VAN DER KOOY, D.: Simultaneous ultrastructural
localization of chole encogenous catecnolamines into the pertusate of discrete brain areas of
the cat in vivo. Experientia (Basel) 31: 560-562, 1975.
120. LOOPUJUIT, L. D., AND VAN DER KOOY, D.: Simultaneous ultrastructural
localization of chol
- Fractivity in nerve fibers of the rat nucleus accumbens. Neurosci. Lett.

88: 329–334, 1985.

121. MAGGI, A., AND ENNA, S. J.: Regional alterations in rat brain neurotransmitter Release in Vivo, John

22. MARSDEN, C. A.: M 121. MAGGI, A., AND ENNA, S. J.: Regional alterations in rat brain neurotransmitter systems following chronic lithium treatment. J. Neurochem. 34:
888-892, 1980.
122. MARSDEN, C. A.: Measurement of Neurotransmitter Release
-
-

3-MT MEASUREMENTS AND DA RELEASE IN VIVO FROM NEURONS 185

f catechol-o-methyl transferase and monoamine

-250. 1979. Catechol-o-methyl transferase and monoamine

-250. 1979. Catechol-o-methyl transferase and monoamine

ox

- **CEASE IN VIVO FROM NEURONS** 185
and raphe lesions on the catechol-o-methyl transferase and monoamine
oxidase activities in the rat striatum. Eur. J. Pharmacol. 19: 35-42, 1972.
124. MARSHALL, J. F.: Somatosensory inattent **tracerebral 6-OHDA injections:** spontaneous recovery and pharmacological control. Brain Sea. 177: 311-324, 1979.

124. MARSHALL, J. F.: Somatoensory inattention after dopamine-depleting in

tracerebral 6-OHDA injections: spontaneous recovery and pharmacolog

cal control. Brain Res. 177: 311
-
- next disorders of aging. Brain Res. 379: 112-117, 1986.

125. MARSHALL, J. F., AND ALTAR, C. A.: Striatal dopamine uptake and move-

126. MARSHALL, J. F., AND ALTAR, C. A.: Striatal dopamine uptake and move-

126. MCKENZI, ARSHALL, J. F., AND ALTAR, C. A.: Striatal dopamine uptake and movement disorders of aging. Brain Res. 379: 112–117, 1986.
CKENZI, G. M., AND SZERB, J. C.: The effect of dihydroxyphenylalanine,
pheniprazine, and d-amphetam ment disorders of aging. Brain Res. 379: 112-117, 1986.
126. McKENZI, G. M., AND SZERB, J. C.: The effect of dihydroxyphenylalanine,
pheniprazine, and d-amphetamine on the in vivo release of dopamine
from the caudate nucle
-
- 128. McQuADE, P. S., AND WOOD, P. L.: The effects of administration of meta-tyramine and para-tyramine on dopamine and its metabolites in the rat striatum. Prog. Neuro-Psychopharmacol. Biol. Psychiat. 8: 705-709, 1984.
- 129. MICHAEL, A. C., IKEDA, M., AND JUSTICE, J. B.: Dynamics of recovery of releasable dopamine following electrical stimulation of the medial fore-
brain bundle. Neurosci. Lett. 76: 81-86, 1987. 128. McQuade, P. S., AND WOOD, P. L.: The effects of administration of meta-
tyramine and para-tyramine on dopamine and its metabolites in the rat
striatum. Prog. Neuro-Psychopharmacol. Biol. Psychiat. 8: 705-709, 1984.
12
- 130a. Moraldie. Neurosci. Lett. 76: 81-86, 1987.

130. MICHAEL, A. C., JUSTICE, J. B., AND NEILL, D. B.: In vivo voltammetric

determination of the kinetics of dopamine metabolism in the rat. Neurosci.

Lett. 56: 365-369,
- determination of the kinetics of dopamine metabolism in the rat. Neurosci.

Lett. 56: 365-369, 1985.

130a. MOORE, K. E., DEMAREST, K. T., AND LOOKINGLAND, K. J.: Stress,

prolactin, and hypothalamic dopaminergic neurons. determination of the kinetics of dopamine metabolism in the rat. Neurosc
Lett. 56: 365-369, 1985.
130a. MOORE, K. E., DEMAREST, K. T., AND LOOKINGLAND, K. J.: Stree
prolactin, and hypothalamic dopaminergic neurons. Neuroph
- 130a. MOORE, K. E., DEMAREST, K. T., AND LOOKINGLAND, K. J.: Stress,
prolactin, and hypothalamic dopaminergic neurons. Neuropharmacology
26: 801-807, 1987.
131. MORTIMER, J. A., AND WEBSTER, D. D.: Comparison of extrapyram
-
- motor function in normal aging and Parkinson's disease. In Advances in
Neurogerontology: The Aging Nervous System, ed. by J. A. Nortimer, F.
J., Pirozzolo, and G. S. Maletta, pp. 217-241, Karger, New York, 1982.
132. Mos,
- voltammetric investigations into the action of HA-966 on central dop
minergic neurons. Brain Res. 207: 465-470, 1981.
133. MYERS, S., AND PUGSLEY, T. A.: Decrease in rat striatal dopamine synthes
and metabolism in vivo by nists. Brain Res. 375: 193-197, 1986.

134. NAIR, N. P. V., LaL, S., AND BLOOM, D. M.: Cholecystokinin and schizo-

phrenia. Perspectives on etiology of psychiatric disorders: brain neuro-

transmission and neuro-peptides.
- nists. Brain Res. 375: 193-197, 1986.
AIR, N. P. V., LAL, S., AND BLOOM, D. M.: Cholecystokinin and schizo-phrenia. Perspectives on etiology of psychiatric disorders: brain neuro-
transmission and neuropeptides. Prog. Brai
- 136. OzAWA, H., AND MIYAUCHI, T.: Potentiating effect of lithium chloride on methamphetamine-induced stereotypy in mice. Eur. J. Pharmacol. 41:
2136. PALKOVITS, M., AND BROWNSTEIN, M. J.: Microdissection of brain areas by
- motor activity in rats and mice. Eur. J. Pharmacol. 26: 41-50, 1974.

110. KUSCHINSKY, K., AND HORNYKIEWICZ, O.: Effects of morphine on striatal

110. KUSCHINSKY, K., AND HORNYKIEWICZ, O.: Effects of morphine on striatal
 methanology in mice. Eur. J. Pharmacol. 41:

213-216, 1977.

213-216, PALKOVITS, M., AND BROWNSTEIN, M. J.: Microdissection of brain areas

by the punch technique. In Brain Microdissection Techniques, ed. by A.

C. Cuello, 197. PATRICK, R. L., AND BARCHAS, J. D.: Dopamine synthesis in rat striatal synaptosomes. II. Dibutyryl cyclic adenosine 3',5'-monophosphoric acid and 6-methylenetetrahydropterine-induced synthesis increases without an inc
	- in curease in endogenous dopamine release. J. Pharmacol. Exp. Ther.
197: 97-104, 1976.
138. PELTON, E. W., KIMELBERG, H. K., SHIPHERD, S. V., AND BOURKE, R. S.:
Dopamine and norepinephrine uptake and metabolism by astrogli
	-
	- 138. PELTON, E. W., KIMELBERG, H. K., SHIPHERD, S. V., AND BOURKE, R. S.:
Dopamine and norepine-phrine uptake and metabolism by astroglial cells
in culture. Life Sci. 26: 1655–1663, 1981.
139. PERSSON, S. A.: Effect of mor Philadelphia, 1976. 141. Philadelphia, 1976. 14
	-
	- release by cholecystokinin: relevance to schizophrenia. Trends Pharmacol. Philadelphia, 1976.

	Philadelphia, 1976.

	Philadelphia, 1986.

	Philadelphia, 1986.

	141. PHILLIPS, A. G., LANR, R. F., AND BLAHA, C. D.: Inhibition notical Trans. A. G., LANE, R. F., AND BLAHA, C. D.: Inhibition of dopamine release by cholecystokinin: relevance to schizophrenia. Trends Pharmacol. Sci. 7: 126-128, 1986. PLANTJE, J. P., DUCARTJE, F. A., VERHEIJDEN, F. H LEBLAD, E., AND CARLSSON, A.: In vivo effects of the calcium antagonist
nimodipine on dopamine metabolism in mouse brain. J. Neural Trans.
66: 171-187, 1986.
LANTIE, J. F., DIJCKS, F. A., VERHEIJDEN, F. H., AND STOOF, J.
C
	- **VANTIE, J. F., DIJCKS, F. A., VERHEIJDEN, F. H., AND STOOF, J.** C.: Stimulation of D2 dopamine receptors in rat mesocortical areas inhibits the release of [³H]dopamine. Eur. J. Pharmacol. 114: 401-402, 1985.
LANTIE, J.
	- 144. PLANTJE, J. F., STEINBUSCH, H. W. M., SCHIPPER, J., DIJCKS, F. A., VERHEIJDEN, P., AND STOOP, J. C.: D-2 dopamine receptors regulate the release of [³H]dopamine in rat cortical regions showing dopamine immu-C.:Stimulation of D2 dopamine receptors in rat mesocortical areas inhibits
the release of [*H]dopamine. Eur. J. Pharmacol. 114: 401-402, 1985.
144. PLANTJE, J. F., STEINBUSCH, H. W. M., SCHIPPER, J., DUCKS, F. A.,
VERHELID
	- metabolites, W. Neuroscience 20: 157-168, 1987.

	145. PONZIO, F., ACHILLI, G., PEREGO, C., AND ALGERI, S.: Differential effects

	of certain dopamine gic drugs on the striatal concentration of dopamine

	metabolites, with sp of certain dopaminergic drugs on the striatal concentration of dopamine
metabolites, with special reference to 3-methoxytyramine. Neurosci. Lett.
27: 61-67, 1981.
146. PORTIG, P. J., AND VOGT, M.: Release into the ventricl
	-
	- strains of mices: behavioral and biochemical correlations. J. Physiol. (Lond

	147. RACAGNI, C., BRUNO, F., IULIANO, E., AND PAOLETTI, R.: Differential

	148. RACKHAM, A., Wood, P. L., AND Hudgins. J. Pharmacol.

	148. RACKHA
	- arginivity to morphine-induced analgesia and motor activity in two inbred
strains of mice: behavioral and biochemical correlations. J. Pharmacol.
Exp. Ther. 2009: 111-116, 1979.
148. RACKHAM, A., WooD, P. L., AND HUDGIN, R
	-

PHARM
REV

- release or encogenous copamine and its metaoolites from rat striatum as
drugs. Pharm. Weekbl. Sci. Ed. 6: 153-158, 1983.
Amphetamines A., AND MUNKVARD, I.: Biochemical, anatomical, and psycholog-
ical investigations of ste drugs. Pharm. Weekbl. Sci. Ed. 5: 153-158, 1983.

150. RANDRUP, A., AND MUNKVARD, I.: Biochemical, anatomical, and psychological investigations of stereotyped behavior induced by amphetamines. In Amphetamines and Related C
-
- Amphetamnes and Keiated Compounds, ed. by E. Costa and S. Garattini,

p. 695-713, Rawns Press, New York, 1970.

151. RANJE, C., AND UNGERSTEDT, U.: High correlations between number of

dopamine cells, dopamine levels, and 83-93, 1977.

162. RAO, T. S., KIM, H. S., LEHMANN, J., MARTIN, L. L., AND WOOD. P. L.:

Selective activation of meaocortical dopaminergic pathways by phencyclic

dire (PCP) receptor agonistic: tentative evidence for PCP r
-
-
- 154. RINNE, U. K., SONNIEN, V., AND HYYPPA, M.: Effect of 1-dopa on brain 170
monoamines and their metabolites in Parkinson's disease. Life Sci. 10:
549–557, 1971.
155. RYPT, A. J. RANCIS, A., AND ROTH, J. A.: Distinct cel monoamnes and their metabolites in Farkinson's disease. Lue Sci. 10:
165. Rivert, A. J., FRANCIS, A., AND ROTH, J. A.: Distinct cellular localization
of membrane-bound and soluble forms of catechol-o-methyltranaferase in
b
- **behavior produced and soluble forms of actechol-o-methyltransferase in**

of membrane-bound and soluble forms of catechol-o-methyltransferase in

behavior, T. E., AND BECKER, J. B.: Enduring changes in brain and

behavior 156. ROBINSON, T. E., AND BECKER, J. B.: Enduring changes in brain and
behavior produced by chronic amphetamine administration: a review and
evaluation of animal models of amphetamine psychosis. Brain Res. 11:
157-198, 198
- evaluation of animal models of amphetamine psychosis. Brain 157-198, 1986.
156a. RoBINSON, T. E., AND WHISHAW, I. Q.: Striatal dopamine release
with microdialysis following unilateral nigrostriatal damage. So
noci. Abst. 1 YOBINSON, T. E., AND WHISHAW, I. Q.: Striatal dopamine release asset with microdialysis following unilateral nigrostriatal damage. Soc. Nosci. Abst. 13: A67.5, 1987.

rosci. Abst. 13: A67.5, 1987.

ylacetic acid in the mou
- ronal metabolism of dopamine? Br. J. Pharmacol. Abst. 13: A67.5, 1987.

157. Roffler-Tarlov, S., Sharman, D. F., and Tergerdine, P.: 3,4-Dihydroxyphen-

158. Rottic acid in the mouse striatum: a reflection of intra-and ext
- flow of the release and synthesis of P. S.4-Dihydroxyphen-
placetic acid in the mouse striatum: a reflection of intra- and extraneu-
ronal metabolism of dopamine? Br. J. Pharmacol. 42: 343-351, 1971.
Drug, R. H., WallTERS, ylacetic acid in the mouse striatum: a reflection of intra- and extraneuronal metabolism of dopamine? Br. J. Pharmacol. 42: 343-351, 1971.

1707. H. H., WALTERS, J. R., AND AGHAJANIAN, G. K.: Effect of impulse

flow on the
- 168. KOTH, K. H., WALTERS, J. K., AND AGHAJANIAN, G. K.: Effect of impulse
flow on the release and synthesis of DA in the rat striatum. In Frontiers
in Catecholamine Research, ed. by S. H. Snyder and E. Usdin, pp. 567-
574 **674, Pergamon Press, New York, 1973.**
1974, Pergamon Press, New York, 1973.
A., AND FUXE, K.: Effects of cholecysotokinin peptides and neurotensin
on dopamine release and metabolism in the rostral and caudal part of the
n 160. A., AND FUXE, K.: Effects of cholecysotokinin peptides and neurotensin
on dopamine release and metabolism in the rostral and caudal part of the
nucleus accumbens using intracerebral dialysis. Neurochem. Int. 10: 509-
 A., AND FUXE, K.: Effects of cholecysotokinin peptides and neurotensin
on dopamine release and metabolism in the rostral and caudal part of the
nucleus accumbens using intracerebral dialysis. Neurochem. Int. 10: 509-
520,
- nucleus accumbens using intracerebral dialysis. Neurochem. Int. 10: 509-520, 1987.
160. SALLER, C. F., AND SALAMA, A. I.: 3-Methoxytyramine accumulation: effects of typical neuroleptics and various atypical compounds. Naun
- ILLER, C. F., AND SALAMA, A. I.: 3-Methoxytyramine accumulation: effects of typical neuroleptics and various atypical compounds. Naunyn-Schmie-deberg's Arch. Pharmacol. 334: 125-132, 1986.
KATTON, B., ZIVKOVIC, B., DEDEK, receptor stimulation. III. Effect of program of SL 76002) on NE, DA, and IR 76002) on NE, DA, and Transport, R., and DARTHOLINI, G.: German arminolativity acid (GABA) Transport, R., And BARTHOLINI, G.: Gammac-aminolativity 161. SCATTON, B., ZIVKOVIC, B., DEDEK, J., LLOYD, K. G., CONSTANTINIDIS, J.,
TISSOT, R., AND BARTHOLINI, G.: Gamma-aminobutyric acid (GABA)
receptor stimulation. III. Effect of progabide (SL 76002) on NE, DA, and
5-HT turn
- lateral nigrostriatal damage. Pharmacol. Biochem. Bapt. 1981. 2007.

B88, 1982.

HALLERT, T., UPCHURCH, M., LOBAUGH, N., FARRAR, R., SPIRDUSO, W., GULLIAM, P., VAUGHN, D., AND WILCOX, R.: Tactile extinction: distin-

guish GULLIAM, P., VAUGHN, D., AND WILCOX, R.: Tactile extinction: distin-
guishing between sensorimotor and motor asymmetries in rats with uni-
lateral nigrostriatal damage. Pharmacol. Biochem. Behav. 16: 455-462,
183. SCHOEPP,
-
- notatynaptic glial cell metabolism by both the type A and B forms of
monoamine oxidase. J. Neurochem. 40: 1340-1348, 1983.
164. SCHOEPP, D. D., AND AEZARO, A. J.: Further studies on the nature of
postsynaptic dopemine upta
-
- dependency and investigation of a possible role for carrier-mediated
uptake into serotonin neurons. J. Neurochem. 44: 1747-1752, 1985.
165. SHEEL-KRUGER, J.: Studies on the accumulation of o-methylated dopamine
and noradre 166. SHEEL-KRUGER, J.: Studies on the accumulation of o-methylated dopamine
and noradrenaline in the rat brain following various neuroleptics, thy-
moleptics, and aceperone. Arch. Int. Pharmacodyn. 195: 372–378, 1972.
166. moleptics, and aceperone. Arch. Int. Pharmacodyn. 195: 372-378, 1972.
166. SKAPER, S. D., ADELSON, G. L., AND SEEGMILLER, J. E.: Metabolism of biogenic amines in neuroblastoma and glioma cells in culture. J. Neurochem. 27:
-
- chem. 27: 1065-1072, 1976.

19: Chem. 27: 1065-1072, 1976.

19: Expressed synthesis of striatal dopamine by N,N-dimethyl-

tryptamine. Life Sci. 21: 1597-1602, 1977.

168. SPARKS, D. L., SLEVIN, J. T., AND HANSAKER, J. C.:
-
- 170. STAMFORD, J. A., KRUK, Z. L., AND MILLAR, J.: Measurement of stimulated
- J.: Increased dopamine efflux from striatal slices during development and
after nigrostriatal bundle damage. Neuroscience 7: 1648-1654, 1967.
170. STAMFORD, J. A., KRUK, Z. L., AND MILLAR, J.: Measurement of stimulated
dop dopamine release by in vivo voltammetry: the influence of stimulus duration on drug responses. Neurosci. Lett. 69: 70–73, 1986.
KAMPORD, J. A., KRUK, Z. L., AND MILLAR, J.: Accommodation of rate in introduction and the med
- WOOD AND ALTAR

striatum as 172. STANLEY, M., AND WILK, S.: Striatal DOPAC elevation predicts antipsy-

dministered chotic efficacy of metoclopramide. Life Sci. 24: 1907-1912, 1979. **TAR**
FANLEY, M., AND WILK, S.: Striatal DOPAC elevation predicts an
chotic efficacy of metoclopramide. Life Sci. 24: 1907–1912, 1979.
FARKE, K., REIMANNM, W., ZUMSTEIN, A., AND HERTTING, G.: Eff
	- 172. STANLEY, M., AND WILK, S.: Striatal DOPAC elevation predicts antipsychotic efficacy of metoclopramide. Life Sci. 24: 1907–1912, 1979.
173. STARKE, K., REIMANNM, W., ZUMSTEIN, A., AND HERTTING, G.: Effect of dopamine r **rabbit caudate in vitro. Naunyn-Schmiddel Life Sci. 24: 1907–1912, 1979.**
 173. STARKE, K., REIMANNM, W., ZUMSTEIN, A., AND HERTTING, G.: Effect of

	dopamine receptor agonists and antagonists on release of dopamine in t
	- dopamine receptor agonists and antagonists on release of dopamine in the
rabbit caudate nucleus in vitro. Naunyn-Schmiedeberg's Arch. Pharmacol.
305: 27-36, 1978.
174. STARKE, K., SPAETH, L., LANG, J. D., AND ADELUNG, C.: in vitro comparison of presynaptic and postsynaptic dopamine receptors
in the rabbit caudate nucleus. Naunyn-Schmiedeberg's Arch. Pharmacol.
323: 298-306, 1983.
1983. 298-306, 1983.
synaptosom.al localization of monoamine 174. STARKE, K., SPAETH, L., LANG, J. D., AND ADELUNG, C.: Further functional
in vitro comparison of presynaptic and postsynaptic dopamine receptors
in the rabbit caudate nucleus. Naunyn-Schmiedeberg's Arch. Pharmacol.
323
	-
	- TENSTROM, A., HARDY, J., AND ORELAND, L.: Intra- and extra-dopamine-
symaptocomal localization of monoamine oxidase in striatal homogenates
from four species. Biochem. Pharmacol. 36: 2931-2935, 1987.
coor, J. C., DE BOER, 178. STOOP, J. C., DE BOER, T., SMINIA, P., AND MULDER, A. H.: Stimulation of D2 dopamine receptors in rat neostriatum inhibits the release of acetyl choline and dopamine but does not affect the release of GABA, glutamate
	- choline and dopamine but does not affect the release of GABA, glutamate
or serotonin. Eur. J. Pharmacol. 84: 211-214, 1982.
176a. STOOF, J. C., DEN BRELIEN, E. J. S., AND MULDER, A. H.: GABA
modulates the release of dopami and route of the route of dopenine and acetylcholine from rat caudate modulates the release of dopenine and acetylcholine from rat caudate nucleus slices. Eur. J. Pharmacol. 27: 35-42, 1979. 177. STROMBOM, U.: Catecholamin
	-
	- regions: a combined fluorescent regions: A compared fluorescent retrograde tracer and interest and route of tyrosine hydroxylation in mouse brain. Naunyn-Schiedeberg's Arch. Pharmacol. 292: 167-173, 1976.

	178. SwaNSON, L study in the rat. Brain Sea. Bull 9: 321-353, 1982.

	179. SWANSON, L. W.: The projections of the ventral tegmental area and adjacent

	regions: a combined fluorescent retrograde tracer and immunofluorescence

	study in the r
	- autoreceptors modulate dopamine release from the projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull. 9: 321-353
	-
	- 179. TALMACIU, R. K., HOFFMAN, I. S., AND CUBEDDUX, L. X.: Dopamine
autoreceptors modulate dopamine release from the prefrontal cortex. J.
Neurochem. 47: 805-817, 1986.
180. TAM, S.-Y., AND ROTH, R. H.: Selective increase Biochem. Pharmacol. 34: 1595-1598, 1985.

	181. TAMMINGA, C. A., DEFRAITES, E. G., GOTTS, M. D., AND CHASE, T. N.:

	Apomorphine and N-n-propylnorapomorphine in the treatment of schir-

	ophrenia. In Apomorphine and Other Dop Apomorphine and N-n-propylnorapomorphine in the treatment of schizophrenia *In* Apomorphine and Other Dopaminometics, ed. by G. U. Corsis and F. L. Geesa, pp. 49-56, Raven Press, New York, 1981.
182. TAMMINGA, C. A., GOTTS
	-
	- propylinoraporphine. Arch. Gen. Propaminometics, ed. by G. U. Corsis
and F. L. Gessa, pp. 49-56, Raven Press, New York, 1981.
182. TAMMINGA, C. A., GOTTS, M. D., GUNVANT, K. T., ALPHREE FOR SONG
FOSTER, N. L.: Dopamine ago
	- catecholamine containing neurones in the rat brain. J. Neurochem. 17:
269-278, 1970.
184. VAMENBURG, C. F. M., NOACH, E. L., AND WIJLING, A.: Involvement
of the nerve impulse flow in the release of extragranular dopamine.
	- electrochemical detection, and liquid scintillation counting. J. Neurosci.
Methods 11: 29-38, 1964. J. Pharmacol. 57: 191-199, 1979.

	185. VAN VALKENBURG, C., VAN DER KROGT, J., MOLEMAN, P., VAN BERKUM,

	H., TJADEN, U., AND DE JONG, J.: A procedure to measure the specific

	activities of dopamine and its metabolites in ra
	- **186. VOIGT, M. M., AND WANG, R. Y.: In vivo release of dopamine in the nucleus accumbens of the rat: modulation by cholecystokinin. Brain Res. 296:
189–193, 1984.
187. VoIGT, M. M., WANG, R. Y., AND WESTFALL, T. C.: The e**
	-
	- **from cat brain following** electrical stimulation of the effects of cholecystokinin on the in vivo release of newly synthesized [⁴H]dopamine from the nucleus accumbens of the rat. J. Neurosci. 5: 2744–2749, 1985.
DN VOIG 188. VON VOIGTLANDER, P. F., AND MOORE, K. E.: The release of ²H-dopamine
from cat brain following electrical stimulation of the substantia nigra and
caudate nucleus. Neuropharmacology 10: 733-741, 1971.
189. VULTO, A. G
	- caudate nucleus. Neuropharmacology 10: 733-741, 1971.
189. VULTO, A. G., SHARP, T., AND UNGERSTEDT, U.: Rapid postmortal increase
in extracellular concentration of dopamine in the rat brain as assessed by NO VOIGTLANDER, P. F., AND MOORE, K. E.: The release of "H-dopamine from cat brain following electrical stimulation of the substantia nigra and caudate nucleus. Neuropharmacology 10: 733–741, 1971.
ULTO, A. G., SHARP, T.,
	- from cat brain following electrical stimulation of the substantia nigra and
from cat brain following electrical stimulation of the substantia nigra and
caudate nucleus. Neuropharmacology 10: 733-741, 1971.
189. VULTO, A. G 190. VULTO, A. G., WESTERNBERG, H. G. M., MEUER, L. B. A., AND VERSTEEG,
D. H. G.: The dopamine metabolite 3-methoxytyramine is not a suitable
indicator of dopamine release in the rat brain. J. Neurochem. 47: 1387-
1393, 1
	- release in the rathrain. J. Neurochem. 47: 1387-1393, 1986.

	191. WALDMEIER, P. C., LAUBER, J., BLUM, W., AND RICHTER, W. J.: 3-

	Methoxytyramine: its suitability as an indicator of synaptic dopenine

	relevance of preferen
	- **EXUST THE MESOLICE CONSTRUMERS AND MESTER, W. J.:** Methoxytyramine: its suitability as an indicator of synaptic dopaminelesse. Naunyn-Schiedeberg's Arch. Pharmacol. 315: 219-225, 1981. ALDMEER, P. C., AND MATRER, L.: On t Methoxytyramine: its suitability as an indicator of synaptic dopamine
release. Naunyn-Schiedeberg's Arch. Pharmacol. 315: 219–225, 1981.
192. WALDMEIER, P. C., AND MAITRE, L.: On the relevance of preferential
increases of release. Naunyn-Schiedeberg's Arch. Pharmacol. 315: 219–225, 1981.

	192. WALDMEIER, P. C., AND MAITRE, L.: On the relevance of preferential

	increases of mesolimbic versus striatal dopamine turnover for the predic-

	tion o
	- tion of antipsychotic activity of psychotropic drugs. J. Neurochem. 27: 589-597, 1976.

	193. WALDMETER, P. C., AND MATTRE, L.: Neurochemical investigations of the interaction of N,N-dimethyltryptamine with the dopaminergic
- after nigrostriatal bundle damage. Neuroscience 7: 1648-1654, 1987.

2. State of the postmortem interval. J. Forenaic Sci. 193. WALDMETER, P. C., AND MATTRE, L.: Neurochemical investigations of the postmanner as a gauge of NEURONS: S.C., AND MATTRE, L.: Neurochemical investigations of the interaction of N,N-dimethyltryptamine with the dopaminergic system in rat brain. Psychopharmacology 52: 137-144, 1977.
ALTTRES, J. R., ROTH, R. H., AND AGH The UNIX CONSTRAINS TO THE THE SUPPORT THE SUPPORT THE SUPPORT THE SUPPORT THE SUPPORT THAN A SUPPORT THE SUPPORT THAN A SUPPORT THAN A SUPPORT THAN THE SUPPORT THAN THE SUPPORT THAN A SUPPORT THAN THE SUPPORT THAN A SUPPO nourons: similar biochemical and histochemical effects of gamma-hydrox-
neurons: similar biochemical and histochemical effects of gamma-hydrox-
butyrate and acute lesions of the nigrostriatal pathway. J. Pharmacol.
Exp. Th
	-
	- Exp. Ther. 186: 630–639, 1973.
195. WANG, R. Y., WHITE, F. J., AND VOIGT, M. M.: Cholecystokinin, dopamine,
and schizophrenia. Trends Pharmacol. Sci. 5: 436–438, 1984.
196. WELLER, M. E., ROSE, S., JENNER, P., AND MASDEN,

ARMA

- 197. WESTERINK, B. H. C.: Effects of drugs on the formation of 3-methos tyramine, a dopamine metabolite, in the substantia nigra, striatum, 3-MT MEASUREMENTS AND DA I
tyramine, a dopamine metabolite, in the substantia nigra, striatum, nu-
cleus accumbens, and tuberculum olfactorium of the rat. J. Pharm. Phar-**Cleus accumbens, and tuberculum olfactorium of 3-methody-tyramine, a dopamine metabolite, in the substantia nigra, striatum, nucleus accumbens, and tuberculum olfactorium of the rat. J. Pharm. Pharmeol. 31: 94-99, 1979.
** tyramine, a dopamine metabolite, in the substantia nigra, striatum, nucleus accumbens, and tuberculum olfactorium of the rat. J. Pharm. Pharmacol. 31: 94-99, 1979.

198. WESTERINK, B. H. C.: Sequence and significance of do
-
-
- macol. 31: 94-99, 1979.

198. WESTERINK, B. H. C.: Further studies on the sequence of dopamine metabolism in the rat brain. Eur. J. Pharmacol. 56: 313-322, 1979.

199. WESTERINK, B. H. C.: Sequence and significance of dopa
- 199. WESTERINK, B. H. C.: Sequence and significance of dopamine metabolism
in the rat brain. Neurochem. Int. 7: 221-227, 1985.
200. WESTERINK, B. H. C., DAMSMA, G., ROLLEMA, H., DE VRIES, J. B., AND
HORN, A. S.: Scope and methoxytyramine in the rat striatum by HPLC with electrochemical detection: implications for the eequence in the cerebral metabolism of dopamine. J. Neurochem. 38: 342-347, 1982.
ESTERINK, B. H. C., AND SPAAN, S. J.: On th
- release. J. Neurochem. 38: 342-347, 1982.
202. WESTERINK, B. H. C., AND SPAAN, S. J.: On the significance of endogenous
3-methoxytyramine for the effects of centrally acting drugs on dopamine
3-methoxytyramine for the effe
- dopamine. J. Neurochem. 38: 342-347, 1982.

202. WESTERINK, B. H. C., AND SPAAN, S. J.: On the significance of endogenous

3-methoxytyramine for the effects of centrally acting drugs on dopamine

release in the net brain.
- 204. **WoLF,** M. E., **AND ROTH,** R. H.: Dopamine neurons projecting **to the medial** prefrontal cortex possess release-modulating autoreceptors. **Neurophar-**
- macology 26: 1053-1059, 1987.

204. Wol.F, M. E., AND ROTH, R. H.: Dopamine neurons projecting to the medial

prefrontal cortex possess release-modulating autoreceptors. Neurophar-

2020. Wood, P. L.: Actions of GABAergic macology 26: 1053-1059, 1987.

206. Woon, P. L.: Actions of GABAergic agents on dopamine metabolism in the

nigrostriatal pathway of the rat. J. Pharmacol. Exp. Ther. 222: 674–679,

1982.

206. Woon, P. L.: A selected ion
-
- 1982.

206. Woon, P. L.: A selected ion monitoring assay for dopamine and its metab-

olites using negative chemical ionization. Biomed. Mass Spec. 9: 302-306,

224.

1982.

207. Woon, P. L.: Opioid regulation of CNS dopam
- 207. Woon, P. L.: Opioid regulation of CNS dopaminergic pathways: a review ropharmacology 21: 1305-1310, 1982.

of methodology, receptor types, regional variations, and species differ-

ences. Peptides 4: 595-601, 1983.

2 or methodology, receptor types, regional variations, and species dirferences. Peptides 4: 595-601, 1983.

208. Wood, P. L.: The significance of multiple CNS opioid receptor types: a

review of critical considerations relat
- noon, P. L.: The significance of multiple CNS opioid receptor types: a review of critical considerations relating to technical details and anatomy in the study of central opioid actions. Peptides 9: 49-55, 1988. Coros, P. 209. WOOD, P. L., ALTAR, C. A., AND KIM, H. S.: Presynaptic inhibitionigrostriatal dopamine release in the mouse: lack of cross-tolerance tween apomorphine, GBL, and CGS 10746B. Life Sci. 42: 1503-1
1988.
210. WOOD, P. L., nigrostriatal dopamine release in the mouse: lack of cross-tolerance between apomorphine, GBL, and CGS 10746B. Life Sci. 42: 1503-1506, 1988.
1988. Life Sci. 42: 1503-1506, 1986.
1988. Life Sci. 42: 1503-1506, 1990. P. L.,
-
- 211. WooD, P. L, **ETIENNE,** P., LAL, S., **AND NeiR,** N. P. V.: GABAergic regulation of nigrostriatal neurons: coupling of benzodiazepine and GABA 117-124, 1986.

receptors. Prog. Neuro-Psychopharmacol. Biol. Psychiat. 6: 471-474, 229. ZETTERSTROM, T., AND UNGERSTRDT, U.: Effects of apomorphine Frog. Neuro-Psychopharmacol. Biol. Psychiat. 8: 471-474, 1982.
The Members. Psychopharmacol. Biol. Psychiat. 6: 471-474, P., 2000, P. L., ETIENNE, P., LAL, S., AND NAIR, N. P. V.: Benzodiazepines
212. Wood, P. L., ETIENNE,
-
- 213. WOOD, P. L., KIM, H. S., AND ALTAR, C. A.: In vivo assessment of dopamine and norepinephrine release in rat neocortex: gas chromatography-mass and GABAergic regulation of nigrostriatal neurons: lack of tolerance and GABAergic regulation of nigrostriatal neurons: lack of tolerance Prog. Neuro-Psychopharmacol. Biol. Psychiat. 8: 779-783, 1984. 000, P. L., KIM, H. S and GABAergic regulation of nigrostriatal neurons: lack of toleran
Prog. Neuro-Psychopharmacol. Biol. Psychiat. 8: 779–783, 1984.
COD, P. L., KIM, H. S., AND ALTAR, C. A.: In vivo assessment of dopam
and norepinephrine rel
- **214. WooD,** P. L., **KIM,** H. S., **BOYAR,** W. C., **AND HU'rcHlsoN,** A.: Inhibition E IN VIVO FROM NEURONS 187

oon, P. L., Kim, H. S., Boyar, W. C., and Hurchison, A.: Inhibition

of rat nigrostriatal dopamine release by adenosine receptor agonists: Al

receptor mediation. Neuropharmacology (in press), 1 receptor mediation. Neuropharmacology (in press), 1988.
214. Woon, P. L., Kim, H. S., Boyar, W. C., AND HUTCHISON, A.: Inhibition
of rat nigrostriatal dopamine release by adenosine receptor agonists: A1
receptor mediation. COD, P. L., KIM, H. S., BOYAR, W. C., AND HUTCHISON, A.: Inhibition
of rat nigrostriatal dopamine release by adenosine receptor agonists: A1
receptor mediation. Neuropharmacology (in press), 1988.
Coop, P. L., KIM, H. S.,
- of rat nigrostriatal dopamine release by adenosine receptor agonists: A1
receptor mediation. Neuropharmacology (in press), 1988.
215. Woon, P. L., KIM, H. S., AND MARIEN, M. R.: Intracerebral dialysis: direct
evidence for release. Life Sci. 41: 1–5, 1987.
- striates. Life Sci. 41: 1-5, 1987.

216. Woon, P. L., KIM, H. S., STOCKLIN, K., AND RAO, T. S.: Dynamics of the

striatal 3-MT pool in rat and mouse striatum: species differences as

assessed by steady-state measurements a 216. Wood, P. L., KIM, H. S., STOCKLIN, K., AND RAO, T. S.: Dynamics of the
- tetrahydrocarbazolamine neuroleptica. Prog. Neuro-Psychopharmacol.
- Biol. Psychiat. 8: 773-777, 1984.
Joon, P. L., McQuane, P. S., ETIENNE, P., LAL, S., AND NAIR, N. P. V.:
Differential actions of classical and atypical neuroleptics on mouse nigro-218. WOOD, P. L., MCQUADE, P. S., ETIENNE, P., LAL, S., AND NAIR, N. P. V.:
Differential actions of classical and atypical neuroleptics on mouse nigro-
striatal neurons. Prog. Neuro-Psychopharmacol. Biol. Psychiat. 7: 765-218. WOOD, P. L., MCQUADE, P. S., ETIENNE, P., LAL, S., AND NAIR, N. P. V.:
Differential actions of classical and atypical neuroleptics on mouse nigro-
striatal neurons. Prog. Neuro-Psychopharmacol. Biol. Psychiat. 7: 765-
- 219. WOOD, P. L., NAIR, N. P. V., AND BOZARTH, M.: Striatal 3-methoxytyramine as an index of dopamine release: effects of electrical stimulation.
Neurosci. Lett. 32: 291-294, 1982.
220. WoOD, P. L., NAIR, N. P. V., LAI, S.
-
-
- Neurosci. Lett. 32: 291-294, 1962.

220. Woon, P. L., NAIR, N. P. V., LAL, S., AND ETIENNE, P.: Buspirone, a

potential atypical neuroleptic. Life Sci. 33: 269-273, 1963.

221. Woon, P. L., AND PERLOQUIN, A.: Increases in
- mesocortical but not mgrostriatal dopamine release in the rat. Life Sci.

223. WooD, P. L., AND RAO, T. S.: Differential actions on dopamine synthesis

and release in the rat striatum after cessation of impulse flow with G comparison. The rat and mouse in the rat attriatum after cessation of impulse flow with GB or TTX (submitted), 1988.

or TTX (submitted), 1988.

or TTX (submitted), 1988.

the rat and mouse: the role of nigral and striatal
- ropharmacology 21: 1305-1310, 1982. 224. Wood, P. L., AND RICHARD, J. W.: Morphine and nigrostriatal function in the rat and mouse: the role of migral and striatal opiate receptors. Neuromenology 21: 1305-1310, 1982. Wood,
- the rat and mouse: the role of nigral and striatal opiate receptors. Neu ropharmacology 21: 1305-1310, 1982.
Coop, P. L., SOTLAND, M., RICHARD, J. W., AND RACKHAM, A.: Action
of mu, kappa, sigma, delta, and agonist/antagon
- **226. Woon, P. L., SOTLAND, M., RICHARD, J. W., AND RACKHAM, A.: Actions**
of mu, kappa, sigma, delta, and agonist/antagonist opiates on striatal
dopaminergic function. J. Pharmacol. Exp. Ther. 215: 697-703, 1980.
226. Yong
- on the turnover and release of dopamine in rat striatum. J. Pharmacol.
Exp. Ther. 231: 38-42, 1984.
227. ZETTERSTROM, T., SHARP, T., AND UNGERSTEDT, U.: Effect of neuroleptic
drugs on striatal dopamine release and metaboli studied by intracerebral dialysis. Eur. J. Pharmacol. 106: 27-37, 1985.
- on the turnover and release of dopamine in rat striatum. J. Pharmacol.
Exp. Ther. 231: 38-42, 1984.
227. ZETTERSTROM, T., SHARP, T., AND UNGERSTEDT, U.: Effect of neuroleptic drugs on striatal dopamine release and metaboli drugs on striatal dopamine release and metabolism in the awake rat
drugs on striatal dopamine release and metabolism in the awake rat
studied by intracerebral dialysis. Eur. J. Pharmacol. 106: 27-37, 1985.
228. ZETTERSTROM
-
- I. Pharmacol. 934:

in rat striatum in vivo. Naunyn-Schmiedeberg's Arch. Pharmacol. 934:

229. **ZETTERSTROM**, T., AND UNGERSTRDT, U.: Effects of apomorphine on the

in vivo release of dopamine and its metabolites, studied metrical and the metabolites, studied by brain dialysis.

230. ZIGMOND, M. J., AND STRICKER, E. M.: Adaptive properties of monoaminergic neurons. *In* Handbook of Neurochemistry, ed. by A. Lajtha, vol. 9, pp. 87-107, Plenu GMOND, M. J., AND STRICKER, E. M.: Adaptive properties of monergic neurons. In Handbook of Neurochemistry, ed. by A. Lajthapp. 87-107, Plenum Press, New York, 1985.
DMSTERN, A., KARDUCK, W., AND STARKE, K.: Pathways of dom
-

lspet

REVIEW

ARMACOLOGI